IBM COBOL for MVS® & VM
IBM COBOL Set for AIX®
IBM VisualAge® COBOL

Language Reference

SC26-4769-04

— Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page x.

Fifth Edition (November 1998, softcopy only)

This edition applies to:

IBM COBOL for MVS & VM Version 1 Release 2 Modification 2 (Program Number 5688-197)
IBM COBOL Set for AIX Release 1 (Program Number 5765-548)
IBM VisualAge COBOL Version 2.2 (Program Number 5639-B92)

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition also applies to:

IBM COBOL for OS/390® & VM Version 2 Release 1 Modification 1 (Program Number 5648-A25)

When using this edition for IBM COBOL for OS/390 & VM, treat references to MVS as if they were references to
0S/390.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

Editions marked “softcopy only” cannot be ordered as printed publications. For information about obtaining these edi-
tions, see “Softcopy Publications for IBM COBOL” on page 576.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, HHX/H3
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices X
Programming Interface Information X
Trademarks L Xi
About This Book Xii
IBM EXteNsions Xii
Obsolete Language Elements Xii
How to Read the Syntax Diagrams Xiii
DBCS Notation XV
Acknowledgment Xvi
Summary of Changes Xvii
Fifth Edition (November 1998, Softcopy Only) XVii
Fourth Edition (April 1998) Xvii
Third Edition (July 1996, Softcopy Only) Xviii
Second Edition (October 1995)o Xviii
Extensions for Object-Oriented COBOL (MVS, AlX, and OS/2 Only) Xviii
Extensions for Interoperability (MVS, VM, AIX,and OS/2) XiX
Support for COBOL on AlX and OS/2 XiX
Part 1. COBOL Language Structure 1
Characters 2
Character-Strings 3
Figurative Constants 8
Special Registers L 10
Literals 20
Separators 28
Sections and Paragraphs 30
Statements and Clauses 30
Reference Format 32
Sequence Number Area 32
Indicator Area L 32
Area A L 33
Area B . . L 34
Area Aor Area B L 37
Scope of Names L 39
Types of Names L 39
External and Internal Resourceso 42
Resolution of Names 43

© Copyright IBM Corp. 1991, 1998 iii

COBOL Language Reference

Referencing Data Names, Copy Libraries, and Procedure Division Names 44
Uniqueness of Reference 44
Transfer of Control 56
Millennium Language Extensions and Date Fields 58
Millennium Language Extensions Syntax 58
Terms and CONCEPLS o o v i e e 59
Part 2. COBOL Source Unit Structure 63
COBOL Program Structure 64
Nested Programs 66
COBOL Class Definition Structure 69
COBOL Method Definition Structure 71
Identification Division 73
Identification Division L 74
PROGRAM-ID Paragraph 77
CLASS-ID Paragraph 79
METHOD-ID Paragraph e 81
Optional Paragraphs 83
Part 4. Environment Division 85
Configuration Section 86
SOURCE-COMPUTER Paragraph, 87
OBJECT-COMPUTER Paragraph 88
SPECIAL-NAMES Paragraph 89
ALPHABET Clause e 92
SYMBOLIC CHARACTERS Clause 95
CLASS Clause e 95
CURRENCY SIGN Clause e 96
REPOSITORY Paragraph 98
Input-Output Section 100
FILE-CONTROL Paragraph e 102
SELECT Clause e 106
ASSIGN Clause 106
RESERVE Clause 110
ORGANIZATION Clause e e e 111
PADDING CHARACTER Clause 114
RECORD DELIMITER Clause 114

ACCESS MODE Clause i e 115

RECORD KEY Clause e e 117
ALTERNATE RECORD KEY Clause 118
RELATIVE KEY Clause et 119
PASSWORD Clause e 120
LOCK MODE Clause (OS/2 VSAM FilesOnly) 120
FILE STATUS Clause o i i it e e e 122
I-O-CONTROL Paragraph 124
RERUN Clause e 125
SAME AREA Clause e 127
SAME RECORD AREA Clause 127
SAME SORT AREA Clause it i 128
SAME SORT-MERGE AREA Clause 129
MULTIPLE FILE TAPE Clause i . 129
APPLY WRITE-ONLY Clause o vt tie et e 129
Part 5. Data Division 131
Data Division Overview 132
File Section 133
Working-Storage Section L 133
Local-Storage Section 135
Linkage Section 135
Data Types 136
Data Relationships 137
Data Division—File Description Entries 144
File Section 147
EXTERNAL Clause e 148
GLOBAL Clause e 149
BLOCK CONTAINS Clause i 149
RECORD Clause e 151
LABEL RECORDS Clause o v i ittt e 154
VALUE OF Clause e e 155
DATARECORDS Clause i e 155
LINAGE Clause e 155
RECORDING MODE Clause o v i it it e e e 157
CODE-SET Clause e 159
Data Division—Data Description Entry oL 161
Format 1 161
Format 2 162
Format 3 162
Level-Numbers 162
BLANK WHEN ZERO Clause i 164
DATE FORMAT Clause oo 164
EXTERNAL Clause e 170
GLOBAL Clause e 170

Contents V

JUSTIFIED Clause o e e e 171

OCCURS ClauSe o o o 172
PICTURE Clause 178
REDEFINES Clause 195
RENAMES Clause 198
SIGN Clause 200
SYNCHRONIZED Clause o i 202
USAGE Clause e e 209
VALUE Clause e 217
Part 6. Procedure Division 223
Procedure Division Structure 225
Requirements for a Method Procedure Division 226
The Procedure Division Header 227
Declaratives 230
Procedures 231
Arithmetic Expressions L 233
Conditional EXpressions 239
Statement Categories 261
Statement Operations 264
Procedure Division Statements oL 277
ACCEPT Statement e 277
ADD Statement e 282
ALTER Statement e 285
CALL Statement e e 287
CANCEL Statement e 294
CLOSE Statement e e 296
COMPUTE Statement e 300
CONTINUE Statement oo 302
DELETE Statement e 303
DISPLAY Statement 305
DIVIDE Statement 309
ENTRY Statement e 312
EVALUATE Statement 313
EXIT Statement 317
EXIT METHOD Statement 318
EXIT PROGRAM Statement 319
GOBACK Statement e 320
GO TO Statement e 321
IF Statement L 323
INITIALIZE Statement e e 325
INSPECT Statement e 328
INVOKE Statement e 337
MERGE Statement 345
MOVE Statement 352
MULTIPLY Statement o 357

Vi COBOL Language Reference

OPEN Statement 359

PERFORM Statement 365
READ Statement 376
RELEASE Statement 385
RETURN Statemento 387
REWRITE Statement 389
SEARCH Statement 393
SET Statement 400
SORT Statement e 407
START Statement e 415
STOP Statement e 418
STRING Statemento 420
SUBTRACT Statement e 425
UNSTRING Statement e 428
WRITE Statement e 436
Part 7. Intrinsic Functions, 445
Intrinsic Functions 447
Specifyinga Function 447
Function Definitions 454
ACOS . . e 458
ANNUITY e e e 459
ASIN e 460
ATAN L e 461
CHAR . . . 462
COS . . 463
CURRENT-DATE 464
DATE-OF-INTEGER 466
DATE-TO-YYYYMMDD 467
DATEVAL 468
DAY-OF-INTEGER 470
DAY-TO-YYYYDDD 471
FACTORIAL . . . 472
INTEGER 473
INTEGER-OF-DATE 474
INTEGER-OF-DAY 475
INTEGER-PART s 476
LENGTH . . . 477
LOG . . s, 478
LOGI0 479
LOWER-CASE 480
MAX . 481
MEAN . . 482
MEDIAN . . 483
MIDRANGE s 484
MIN 485
MOD . . 486

Contents Vii

NUMVAL . . e 487
NUMVAL-C . . . e 488
ORD . . e e 490
ORD-MAX . e e 491
ORD-MIN . . . e e 492
PRESENT-VALUE e 493
RANDOM e 494
RANGE e 495
REM . s 496
REVERSE s 497
SIN e e 498
SQRT . 499
STANDARD-DEVIATION e 500
SUM e 501
TAN e 502
UNDATE . . . e e 503
UPPER-CASE e 504
VARIANCE 505
WHEN-COMPILED e 506
YEAR-TO-YYYY . e 508
YEARWINDOW e 509
Part 8. Compiler-Directing Statements 511
Compiler-Directing Statement 512
BASIS Statement e e 512
CBL (PROCESS) Statement e 513
*CONTROL (*CBL) Statement 514
COPY Statement e 516
DELETE Statement e 523
EJECT Statement e 524
ENTER Statement e 524
INSERT Statement e 525
READY or RESET TRACE Statement 526
REPLACE Statement 527
SERVICE LABEL Statement 530
SERVICE RELOAD Statement i i 531
SKIP1/2/3 Statements 531
TITLE Statement 532
USE Statement e 533
Compiler Directives 539
CALLINTERFACE e e e 539
Appendixes ..., 543
Appendix A. Compiler Limits 544

viii COBOL Language Reference

Appendix B. EBCDIC and ASCII Collating Sequences 548

EBCDIC Collating Sequence 548
US English ASCIl Code Page (ISO646) 551
Appendix C. Source Language Debugging 555
Coding Debugging Lines 555
Coding Debugging Sections 555
DEBUG-ITEM Special Register 556
Activate Compile-Time Switch 556
Activate Object-Time Switch 556
Appendix D. Reserved Wordso 558
Appendix E. ASCII Considerations for MVS andVM 565
Environment Divisiono 565
Data Division 567
Procedure Division 567
Appendix F. Locale Considerations (Workstation Only) 568

Appendix G. Summary of Language Difference: Host COBOL and

Workstation COBOL 569
Appendix H. Industry Specifications oL 571
Standard Terminology 573
Bibliography 574
Glossary 577
Index . . . 600

Contents iX

Notices

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evalu-
ation and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

IBM Corporation, HHX/H3
P.O. Box 49023

San Jose, CA 95161-9023
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information

This Language Reference documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of COBOL for MVS & VM, COBOL
Set for AlX, and VisualAge COBOL.

X © Copyright IBM Corp. 1991, 1998

Notices

Trademarks

The following terms are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

AD/Cycle
Advanced Function Printing
AFP

AIX

AIX/6000
BookManager
CICS
CICS/ESA
COBOL/370
DATABASE 2
DB2
DFSORT

IBM

IMS/ESA

Language Environment
MVS

Operating System/2
0Ss/2

0S/390

Print Services Facility
SOM

SOMobjects
VisualAge

VM/ESA

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed

exclusively through X/Open Company Limited.

Other company, product, and service hames may be trademarks or service marks of

others.

Notices Xi

About This Book

This book presents the syntax of COBOL for MVS & VM, COBOL Set for AlX, and
VisualAge COBOL (collectively referred to in this book as IBM COBOL). To indicate
platform-specific information, this book use the following methods:

Prefix the text with platform-specific indicators (for example, Under AIX, 0S/2, and
Windows...)

» Add parenthetical qualifications (for example, (Workstation only))
e Prefix the text with icons. This book uses the following icons:

Informs you of information specific to COBOL for MVS & VM.

Informs you of information specific to COBOL Set for AIX and
VisualAge COBOL (under OS/2® and Windows).

Informs you of information specific to COBOL Set for AlX.

Informs you of information specific to VisualAge COBOL, under OS/2
only.

Note: This book documents extensions for object-oriented COBOL. Object-oriented
COBOL is not supported on VM.

Use this book in conjunction with the IBM COBOL Programming Guide for your plat-
form.

IBM Extensions

IBM extensions generally add to language element rules or restrictions. In the hard-
copy, published book, IBM extensions appear in gray ink. For example:

IBM extensions in text are shown this way.

IBM extensions are not indicated in the appendixes, glossary, or index.

Obsolete Language Elements

Obsolete language elements are COBOL 85 Standard language elements that will be
deleted from the next revision of the Standard. (This does not imply that these ele-
ments will be eliminated from a future release of an IBM COBOL compiler.)

Xii © Copyright IBM Corp. 1991, 1998

The language elements that will be deleted from the next revision of the COBOL 85
Standard are:

ALTER statement

AUTHOR paragraph

Comment entry

DATA RECORDS clause
DATE-COMPILED paragraph
DATE-WRITTEN paragraph

DEBUG-ITEM special register

Debugging sections

ENTER statement

GO TO without a specified procedure name
INSTALLATION paragraph

LABEL RECORDS clause

MEMORY SIZE clause

MULTIPLE FILE TAPE clause

REVERSED phrase

SECURITY paragraph

SEGMENT-LIMIT

SEGMENTATION

STOP statement

USE FOR DEBUGGING declarative
VALUE OF clause

The figurative constant ALL literal, when associated with a numeric or numeric-
edited item and with a length greater than one

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a syntax diagram.
The — symbol indicates that the syntax diagram is continued on the next line.

The »— symbol indicates that the syntax diagram is continued from the previous
line.

The —>< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the —> symbol.

Required items appear on the horizontal line (the main path).

—— Format
»»>—STATEMENT—required item

\
A

Optional items appear below the main path.

About This Book Xili

Xiv

— Format

»»>—STATEMENT
|—opt1’ona1 1'tem—I

A\
A

When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

—— Format

»—STATEMENT—Er‘equired choice 1
required choice 2J

A\
A

If choosing one of the items is optional, the entire stack appears below the main
path.

—— Format
»>—STATEMENT i:

A\
A

optional choice 1
optional choice 2

An arrow returning to the left above the main line indicates an item that can be
repeated.

—— Format

\4
A

»—STATEMENT—LrepeataMe item |

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

COBOL Language Reference

—— Format

lw

»—STATEMENT—“-)—[identifier-l @ | J’To—identifier-J’ >
litergl-1— |—{ item 1 }—@J L rounpeo-!

(5)

1

2

3

\4
A

\—meIZE ERROR—imperative-statemen 2?—1J |—END—STATEMENT—@J
ON

item 1:
identifier-2 I
literal-2
arithmetic-expression-1

Notes:

The STATEMENT key word must be specified and coded as shown.
This operand is required. Either identifier-1 or literal-1 must be coded.

The item 1 fragment is optional; it can be coded or not, as required by the application. If item 1
is coded, it can be repeated with each entry separated by one or more COBOL separators.
Entry selections allowed for this fragment are described at the bottom of the diagram.

The operand identifier-3 and associated TO key word are required and can be repeated with
one or more COBOL separators separating each entry. Each entry can be assigned the key
word ROUNDED.

The ON SIZE ERROR phrase with associated imperative-statement-1 are optional. If the ON
SIZE ERROR phrase is coded, the key word ON is optional.

The END-STATEMENT key word can be coded to end the statement. It is not a required
delimiter.

The gray text indicates that arithmetic-expression-1 is an IBM extension. This operand is
optional.

DBCS Notation

Double-Byte Character Strings (DBCS) in literals, comments, and user-
defined words are delimited by shift-out and shift-in characters. In this manual, the

shift-out delimiter is represented pictorially by the < character, and the shift-in character

is represented pictorially by the > character. The EBCDIC codes for the shift-out and
shift-in delimiters are X'OE' and X'OF', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

Double-byte characters are represented in this form: D1D2D3. EBCDIC characters i
double-byte form are represented in this form:.A.B.C. The dots separating the letters
represent the hexadecimal value X'42'.

Under AIX, OS/2, and Windows, you do not delimit DBCS character
strings by shift-in or shift-out characters.

About This Book

n

XV

Acknowledgment

The following extract from Government Printing Office Form Number 1965-0795689 is
presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and specifica-
tions in whole or in part, using ideas taken from this report as the basis for an
instruction manual or for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as part of the introduc-
tion to the document. Those using a short passage, as in a book review, are
requested to mention COBOL in acknowledgment of the source, but need not
guote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contrib-
utor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) | and Il, Data

Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator,

Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in the

COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

XVi COBOL Language Reference

Summary of Changes

Major changes to the COBOL for MVS & VM, COBOL Set for AlX, and VisualAge
COBOL languages are listed below, according to the edition in which they first
appeared. Changes to the language since the previous edition of this book are marked
by a vertical bar in the left margin.

Fifth Edition (November 1998, Softcopy Only)

e Extensions to support the Euro currency sign in numeric-edited data items. These
extensions introduce a PICTURE SYMBOL phrase to the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division. The
PICTURE SYMBOL phrase allows a PICTURE clause currency symbol to repre-
sent a currency sign value that is different from the currency symbol, and not
restricted to a single character. For example, the currency symbol '$' could be
used to represent a code point for the Euro currency sign, or the characters
'EUR'. The extensions also allow multiple currency symbols and currency sign
values to be defined. For details, see “CURRENCY SIGN Clause” on page 96.

e Enhancements to the millennium language extensions:

— Additional date patterns for the DATE FORMAT clause, including “year-last”
dates.

— DATE FORMAT for binary numeric items.

— Relaxation of the USING/RETURNING parameter rules for windowed date
fields.

— Allow signed numeric date fields.

- Special semantics for “trigger” and “limit” date values. For more
information, see “Semantics of Windowed Date Fields” on page 165.

¢ New sub-option TRIG/NOTRIG of the DATEPROC compiler option, to enable or
disable trigger and limit processing.

Fourth Edition (April 1998)

e The millennium language extensions, enabling compiler-assisted date processing
for dates containing 2-digit and 4-digit years.

Requires IBM VisualAge COBOL Millennium Language Extensions for
MVS & VM (program number 5654-MLE) to be installed with your compiler.

For information on the millennium language extensions, see “Millennium Language
Extensions and Date Fields” on page 58.

e New language elements in support of the millennium language extensions:

— DATE FORMAT clause in data description entries
— Intrinsic functions:

© Copyright IBM Corp. 1991, 1998 XVii

- DATEVAL
- UNDATE
- YEARWINDOW

e New compiler options in support of the millennium language extensions:

— DATEPROC/NODATEPROC
— YEARWINDOW

e New compiler option, ANALYZE, to check the syntax of imbedded SQL and CICS®
statements.

¢ New date intrinsic functions to cover the recommendation in the Working Draft for
Proposed Revision of ISO 1989:1985 Programming Language COBOL.:

— DATE-TO-YYYYMMDD
— DAY-TO-YYYYDDD
— YEAR-TO-YYYY

e Extension of the ACCEPT statement to cover the recommendation in the Working
Draft for Proposed Revision of ISO 1989:1985 Programming Language COBOL:

— ACCEPT FROM DATE YYYYMMDD
— ACCEPT FROM DAY YYYYDDD

Third Edition (July 1996, Softcopy Only)

No changes to the IBM COBOL language were made in this edition.

Second Edition (October 1995)

The following changes were made to the IBM COBOL for MVS & VM (formerly named
IBM SAA AD/Cycle® COBOL/370™) language:

Extensions for Object-Oriented COBOL (MVS, AlX, and OS/2 Only)
The following extensions to the COBOL language enable object-oriented COBOL pro-
gramming:

e CLASS IDENTIFICATION DIVISION

e CLASS ENVIRONMENT DIVISION

e CLASS DATA DIVISION

e CLASS PROCEDURE DIVISION

¢ METHOD IDENTIFICATION DIVISION
¢ METHOD ENVIRONMENT DIVISION
¢ METHOD DATA DIVISION

¢ METHOD PROCEDURE DIVISION

e USAGE OBJECT REFERENCE clause
e EXIT statement extension

¢ |INVOKE statement

e SET statement extension

Xviii COBOL Language Reference

Extensions for Interoperability (MVS, VM, AlX, and OS/2)

The following extensions to the COBOL language enable improved interoperability
between COBOL and C, SOM®, and Language Environment®:

e CALL ... RETURNING for invocation of functions

e CALL procedure-pointer

e SET procedure-pointer to function pointer

e OMITTED arguments

e Recursion

¢ Null-terminated literal strings

e BY VALUE arguments on CALL and INVOKE (both identifiers and literals)

e BY VALUE and BY REFERENCE declarations for parameters on the PROCE-
DURE DIVISION and ENTRY USING statements

¢ PROCEDURE DIVISION RETURNING phrase for specifying a return value from a
program, method, or C function.

e Long and mixed-case program names

Support for COBOL on AIX and OS/2

For details on language differences, see Appendix G, “Summary of Language Differ-
ence: Host COBOL and Workstation COBOL” on page 569.

Summary of Changes XiX

XX COBOL Language Reference

Part 1. COBOL Language Structure

Characters e 2
Character-Strings 3
Figurative Constants 8
Special Registers 10
Literals 20
Separators 28
Sections and Paragraphs 30
Statements and Clauses 30
Reference Format 32
Sequence Number Areao 32
Indicator Area L 32
Area A L 33
Area B . . L 34
Area Aor Area B L 37
Scope of Names L 39
Types of Names 39
External and Internal Resources 42
Resolution of Names 43
Referencing Data Names, Copy Libraries, and Procedure Division Names . 44
Uniqueness of Reference 44
Transfer of Control 56
Millennium Language Extensions and Date Fields 58
Millennium Language Extensions Syntax 58
Terms and Concepts L 59

© Copyright IBM Corp. 1991, 1998 1

Characters

Characters

The most basic and indivisible unit of the COBOL language is the character . The IBM
COBOL character set includes the letters of the alphabet, digits, and special characters.
The complete set of characters that form the IBM COBOL character set is shown in
Table 1 on page 3.

The basic IBM COBOL language is restricted to the character set shown in Table 1 on
page 3, but the content of nonnumeric literals, comment lines, comment entries, and
data can include any of the characters from the character set of the computer.

In some cases, the basic character set is extended with the national character set. The
national character set support includes the Double-Byte Character Set (DBCS) and,
additionally for AlX, the Extended Unix** Code (EUC) code page.

Double-byte characters, as the name implies, occupy two adjacent bytes to represent 1
character. A character string containing DBCS characters is called a DBCS character-
string .

For AIX, characters from the EUC code page can be from one to four bytes
long.

DBCS and EUC characters are valid characters in certain COBOL character-strings.
For details, see “COBOL Words with Multi-Byte Characters” on page 4 and “DBCS
Literals” on page 25.

Individual characters are joined to form character-strings , separators , and text
words .

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A character-
string is delimited by separators.

A separator is a string of one or two contiguous characters used to delimit character
strings. Separators are described in detail under “Separators” on page 28.

A text word is a character or a sequence of contiguous characters between character

positions 8 and 72 inclusive on a line in a COBOL library, source program, or in
pseudo-text. For more information on pseudo-text, see “Pseudo-Text” on page 38.

© Copyright IBM Corp. 1991, 1998

Character-Strings

Table 1. Characters—Meanings

Character

Meaning

Space

Plus sign

Minus sign or Hyphen
Asterisk

Slant, Solidus, Stroke, or Slash
Equal sign

Currency sign

Comma

Semicolon

Decimal point or Period
Quotation mark

Left parenthesis

Right parenthesis
Greater than

Less than

Colon

Apostrophe

Alphabet (uppercase)
Alphabet (lowercase)
Numeric characters

Character-Strings

You can use EBCDIC and/or DBCS character strings under MVS and VM or ASCII
and/or DBCS/EUC character-strings under AIX, OS/2, and Windows to form the fol-

lowing:

¢ COBOL words
e Literals

¢ PICTURE character-strings (EBCDIC or ASCII character-strings only)

e Comment text

COBOL Words with Single-Byte Characters
A COBOL word is a character-string of not more than 30 characters that forms a user-
defined word, a system-name, or a reserved word. Except for arithmetic operators and
relation characters, each character of a COBOL word is selected from the following:

e A through Z
¢ athrough z
e 0 through 9
* - (hyphen)

The hyphen cannot appear as the first or last character in such words. All user-defined
words (except for section-names, paragraph-names, segment-numbers, and level-
numbers) must contain at least one alphabetic character. Segment numbers and level
numbers need not be unique; a given specification of a segment-number or level-
number can be identical to any other segment-number or level-number. Each lower-

Part 1. COBOL Language Structure

3

Character-Strings

case letter is considered to be equivalent to its corresponding uppercase letter, except

in nonnumeric literals.

Within a source program the following rules apply for all COBOL words with single-byte

characters:

e A reserved word cannot be used as a user-defined word or as a system-name.

e The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

COBOL Words with Multi-Byte Characters

DBCS/EUC characters must conform to the normal COBOL rules for user-defined
words. The following are the rules for forming user-defined words from multi-byte char-

acters:

Table 2 (Page 1 of 2). Rules for Forming User-Defined Words from Multi-Byte Characters

Rule MVS and VM AlX, OS/2, and Windows
Use of DBCS user-defined words begin with a Not required

Shift-Out shift-out character and end with a shift-in

Shift-In Char- character.

acters

Value Range

DBCS user-defined words can contain charac-
ters whose values range from X'41' to
X'FE' for both bytes.

Valid value ranges for multi-byte characters
depend on the specific code page being used.

Containing
Characters

DBCS user-defined words can contain only

double-byte characters, and must contain at
least one non-EBCDIC character. (Double-

byte EBCDIC characters are represented by
X'42" in the first byte.) Single-byte charac-
ters are not allowed in a DBCS word.

DBCS user-defined words can contain both
double-byte EBCDIC and double-byte non
EBCDIC characters. The only double-byte
EBCDIC characters allowed are: A-Z, a -z,
0 - 9, and the hyphen (-). The hyphen cannot
appear as the first or last character.

A user-defined word can consist of both single-
byte or multiple-byte (including double-byte)
characters. If a character exists in both single-
byte and multiple-byte forms, its single-byte and
multi-byte representations are not equivalent.

Continuation
Rules

Words cannot be continued across lines.

Words cannot be continued across lines.

Uppercase /
Lowercase
Letters

Equivalent

Not equivalent

4 COBOL Language Reference

Character-Strings

Table 2 (Page 2 of 2). Rules for Forming User-Defined Words from Multi-Byte Characters

Rule MVS and VM AlX, OS/2, and Windows
Maximum 14 characters 15 characters for a DBCS code page
Length

For AIX only:

e 7 characters for EUC code page
IBM_eucTW

e 10 characters for EUC code pages,

IBM_eucJP, IBM_eucKR, and IBM_eucCN

User-Defined Words
The following sets of user-defined words are supported:

Alphabet-name
Class-name
Condition-name
Data-name

File-name

Index-name
Level-numbers: 01-49, 66, 77, 88
Library-name
Method-name
Mnemonic-name
Object-oriented class-name
Paragraph-name
Priority-numbers: 00-99
Program-name
Record-name
Section-name
Symbolic-character
Text-name

For level-numbers and priority numbers, each word must be a 1-digit or 2-digit integer.

Multi-Byte Characters Allowed?

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

No

Yes
No

Yes
Yes
No

Yes
Yes
Yes
No

Within a given source program or class definition, but excluding any contained program

or method, each user-defined word (except level-numbers and priority-numbers) can

belong to only one of these sets. Each user-defined word within a set must be unique,

except as specified in “Referencing Data Names, Copy Libraries, and Procedure Divi-

sion Names” on page 44.

The following types of user-defined words can be referenced by statements and entries
in that program in which the user-defined word is declared:

e Paragraph-name
e Section-name

Part 1. COBOL Language Structure

5

Character-Strings

The following types of user-defined words can be referenced by any COBOL program,
provided that the compiling system supports the associated library or other system, and
the entities referenced are known to that system:

e Library-name
e Text-name

The following types of names, when they are declared within a Configuration Section,
can be referenced by statements and entries either in that program which contains a
Configuration Section or in any program contained within that program:

¢ Alphabet-name

e Class-name

e Condition-name

e Mnemonic-name

e Symbolic-character

The function of each user-defined word is described in the clause or statement in which
it appears.

System-Names
A system-name is a character string that has a specific meaning to the system. There
are three types of system-names:
e Computer-name
e Language-name
¢ Implementor-name

There are three types of implementor-names:

¢ Environment-name
e External class-name
e Assignment-name

The meaning of each system-name is described with the format in which it appears.

Under MVS and VM, the only DBCS character string system-name allowed
is computer-name.

Under AIX, OS/2, and Windows, multi-byte characters are allowed for
system-name. Workstation

Function-Names
A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program as a
user-defined word or a system-name. For a list of function-names and their definitions,
see Table 52 on page 455.

6 COBOL Language Reference

Character-Strings

Reserved Words
A reserved word is a character-string with a predefined meaning in a COBOL source

program. IBM COBOL reserved words are listed in Appendix D, “Reserved Words” on
page 558.

Information on selecting an alternate reserved word table can be found in the IBM
COBOL Programming Guide for your platform.

There are six types of reserved words:

¢ Keywords

e Optional words

¢ Figurative constants

e Special character words
e Special object identifiers
e Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or
statement. Within each format, such words appear in uppercase on the main path.

Optional Words
Optional words are reserved words that can be included in the format of a clause,
entry, or statement in order to improve readability. They have no effect on the
execution of the program.

Figurative Constants
See “Figurative Constants” on page 8.

Special Character Words
There are two types of special characters , which are only recognized as special
characters when represented in single-byte.

e Arithmetic operators: + - [* **
See “Arithmetic Expressions” on page 233.

¢ Relational operators : < > = <= >=
See “Conditional Expressions” on page 239.

Special Object Identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method Procedure Division:

SELF
A special object identifier you can use in the Procedure Division of a method.
SELF refers to the object instance used to invoke the currently-executing
method. You can specify SELF only in source program positions that are
explicitly listed in the syntax diagrams.

SUPER
A special object identifier you can use in the Procedure Division of a method
only as the object identifier in an INVOKE statement. When used in this way,

Part 1. COBOL Language Structure 7

Figurative Constants

SUPER refers to the object instance used to invoke the currently-executing
method. The resolution of the method to be invoked ignores any methods
declared in the class definition of the currently-executing method and methods
defined in any class derived from that class. Thus, the method invoked is
inherited from an ancestor class.

Special Registers
See “Special Registers” on page 10.

Figurative Constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO/ZEROS/ZEROES
Represents the numeric value zero (0), or one or more occurrences of the nonnu-
meric character zero (0), depending on context.

When the context cannot be determined, a nonnumeric zero is used.

SPACE/SPACES
Represents one or more blanks or spaces. SPACE is treated as a nonnumeric

literal.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'FF'; for other collating sequences, the actual character used
depends on the collating sequence indicated by the locale. For more information
on locale, see Appendix F, “Locale Considerations (Workstation Only)” on
page 568. HIGH-VALUE is treated as a nonnumeric literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'00'; for other collating sequences, the actual character used
depends on the collating sequence. LOW-VALUE is treated as a nonnumeric
literal.

QUOTE/QUOTES
Represents one or more occurrences of:

e The quotation mark character ("), if the QUOTE compiler option is in effect

or
e The apostrophe character ('), if the APOST compiler option is in effect

QUOTE or QUOTES cannot be used in place of a quotation mark or an apostrophe
to enclose a nonnumeric literal.

ALL literal
Represents one or more occurrences of the string of characters composing the
literal. The literal must be either a nonnumeric literal or a figurative constant other

8 COBOL Language Reference

Figurative Constants

than the ALL literal. When a figurative constant, other than the ALL literal is used,
the word ALL is redundant and is used for readability only. The figurative constant
ALL literal must not be used with the CALL, INSPECT, INVOKE, STOP, or
STRING statements.

symbolic-character

Represents one or more of the characters specified as a value of the symbolic-
character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES para-
graph.

Under AIX, OS/2, and Windows, you cannot specify the SYMBOLIC

CHARACTER clause if a DBCS or EUC code page is indicated by the locale
setting. For more information on locale, see Appendix F, “Locale Considerations

(Workstation Only)” on page 568.

NULL/NULLS

Represents a value used to indicate that data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT REFER-
ENCE, or the ADDRESS OF special register do not contain a valid address. NULL
can be used only where explicitly allowed in the syntax format. NULL has the
value of zero.

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE, and
QUOTE can be used interchangeably. For example, if data-name-1 is a 5-character
data item, each of the following statements will fill data-name-1 with five spaces:

MOVE SPACE TO DATA-NAME-1
MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

You can use a figurative constant wherever “literal” appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax diagram,
only the figurative constant ZERO (ZEROS, ZEROES) can be used. Figurative con-
stants are not allowed as function arguments except in an arithmetic expression, where
they are arguments to a function.

The length of a figurative constant depends on the context of the program. The fol-
lowing rules apply:

When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is 1 character.

Part 1. COBOL Language Structure 9

Special Registers

Special Registers

Special registers are reserved words that name storage areas generated by the com-
piler. Their primary use is to store information produced through specific COBOL fea-
tures. Each such storage area has a fixed name, and must not be defined within the
program.

Unless otherwise explicitly restricted, a special register can be used wherever a data-
name or identifier having the same definition as the implicit definition of the special reg-
ister, (which is specified later in this section).

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see “Qualification” on page 44.)

For the first CALL to a program or INVOKE of a method, the compiler initializes the
special register fields to their initial values.

In the following cases:

e For subsequent CALLs to a CANCELed program

e Programs that possess the INITIAL attribute

e Programs that possess the RECURSIVE attribute

e Programs compiled with the THREAD option (Workstation only)

The following special registers are reset to their initial value on each program or
method entry:

e ADDRESS OF (for each record in the Linkage Section)
¢ RETURN-CODE

¢ SORT-CONTROL

¢ SORT-CORE-SIZE

¢ SORT-FILE-SIZE

e SORT-MESSAGE

¢ SORT-MODE-SIZE

¢ SORT-RETURN

e TALLY

In all other cases, the special registers will not be reset; they will be unchanged from
the value contained on the previous CALL or INVOKE.

You can specify an alphanumeric special register in a function wherever an alphanu-
meric argument to a function is allowed, unless specifically prohibited.

ADDRESS OF

The ADDRESS OF special register exists for each record (01 or 77) in the Linkage
Section, except for those records that redefine each other. In such cases, the
ADDRESS OF special register is similarly redefined.

The ADDRESS OF special register is implicitly defined USAGE IS POINTER.

10 COBOL Language Reference

Special Registers

You can specify the ADDRESS OF special register as an argument to the LENGTH
function. If the ADDRESS OF special register is used as the argument to the LENGTH
function, the result will always be 4, independent of the argument specified for
ADDRESS OF.

A function-identifier is not allowed as the operand of the ADDRESS OF special register.

DEBUG-ITEM
The DEBUG-ITEM special register provides information for a debugging declarative pro-
cedure about the conditions causing debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-NAME PICTURE IS X(30).

02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.

02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the move
were an alphanumeric-to-alphanumeric elementary move without conversion of data
from one form of internal representation to another.

After updating, each field contains:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence
number, depending on the compiler option chosen) that caused execution of the
debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word “OF.”

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of each
level is entered in the respective DEBUG-SUB-n. If the item is not subscripted or
indexed, these fields remain as spaces. You must not reference the DEBUG-ITEM
special register if your program uses more than three levels of subscripting or
indexing.

Part 1. COBOL Language Structure 11

Special Registers

LENGTH OF

DEBUG-CONTENTS

Data is moved into DEBUG-CONTENTS, as shown in Table 3 on page 12.

Table 3. DEBUG-ITEM Subfield Contents

Cause of Debug-
ging Section Exe-
cution

Statement Referred to
in DEBUG-LINE

Contents of
DEBUG-NAME

Contents of
DEBUG-CONTENTS

procedure-name-1
ALTER reference

ALTER statement

procedure-name-1

procedure-name-n
in TO PROCEED
TO phrase

GO TO procedure-
name-n

GO TO statement

procedure—name—n

spaces

procedure-name-n
in SORT/MERGE
input/output proce-
dure

SORT/MERGE statement

procedure-name-n

“SORT INPUT”
“SORT OUTPUT”
“MERGE OUTPUT”
(as applicable)

PERFORM state-
ment transfer of
control

This PERFORM state-
ment

procedure—name—n

“PERFORM LOOP”

procedure-name-n
in a USE procedure

Statement causing USE
procedure execution

procedure—name—n

“USE
PROCEDURE”"

Implicit transfer from
previous sequential
procedure

Previous statement exe-
cuted in previous
sequential procedure *

procedure-name-n

“FALL THROUGH"

First execution of
first nondeclarative
procedure

Line number of first non-
declarative procedure-
name

first nondeclar-
ative procedure

“START
PROGRAM”

Note:

* |f this procedure is preceded by a section header, and control is passed through the section
header, the statement number refers to the section header.

The LENGTH OF special register contains the number of bytes used by an identifier.

LENGTH OF creates an implicit special register whose content is equal to the current
byte length of the data item referenced by the identifier.

Note:

For DBCS data items, each character occupies 2 bytes of storage.

LENGTH OF can be used in the Procedure Division anywhere a numeric data item
having the same definition as the implied definition of the LENGTH OF special register
can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9)

If the data item referenced by the identifier contains the GLOBAL clause, the LENGTH
OF special register is a global data item.

12 COBOL Language Reference

Special Registers

The LENGTH OF special register can appear within either the starting character posi-
tion or the length expressions of a reference modification specification. However, the
LENGTH OF special register cannot be applied to any operand that is reference-
modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special register
allowed in a function where an integer argument is allowed.

is

If the LENGTH OF special register is used as the argument to the LENGTH function,
the result is always 4, independent of the argument specified for LENGTH OF.

LENGTH OF can not be either of the following:

e A receiving data item
e A subscript

When the LENGTH OF special register is used as a parameter in a CALL statement,
the parameter must be a BY CONTENT parameter.

When a table element is specified, the LENGTH OF special register contains the
length, in bytes, of one occurrence. When referring to a table element, it need not be
subscripted.

A value is returned for any identifier whose length can be determined, even if the area
referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with the
LENGTH OF phrase, for example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B

CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through the
intrinsic function LENGTH (See “LENGTH” on page 477). LENGTH supports nonnu-
meric literals in addition to data names.

LINAGE-COUNTER
A separate LINAGE-COUNTER special register is generated for each FD entry con-
taining a LINAGE clause. When more than one is generated, you must qualify each
reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the fol-
lowing:

e If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

¢ |If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item with
the same number of digits as that integer.

Part 1. COBOL Language Structure 13

Special Registers

For more information, see “LINAGE Clause” on page 155.

The value in LINAGE-COUNTER at any given time is the line number at which the
device is positioned within the current page. LINAGE-COUNTER can be referred to in
Procedure Division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated file is
executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this file.
(See “WRITE Statement” on page 436.)

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If the
file description entry for a sequential file contains the LINAGE clause and the GLOBAL
clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer argument
to a function is allowed.

RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the calling
program or operating system when the current COBOL program ends. When a COBOL
program ends:

e If control returns to the operating system, the value of the RETURN-CODE special
register is passed to the operating system as a user return code. The supported
user return code values are determined by the operating system, and might not
include the full range of RETURN-CODE special register values. For
information on user return code values under AlX, see the IBM COBOL Set for AIX

Programming Guide.

e If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to the
value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

The following are examples of how to set the RETURN-CODE special register:
COMPUTE RETURN-CODE = 8

or

MOVE 8 to RETURN-CODE.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

14 COBOL Language Reference

Special Registers

Note: The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL...RETURNING. For more information, see
“INVOKE Statement” on page 337 or “CALL Statement” on page 287.

You can specify the RETURN-CODE special register in a function wherever an integer
argument is allowed.

The RETURN-CODE special register will not contain return code information:

e On the host, from a service call for a Language Environment callable service. For
more information, see the IBM COBOL for MVS & VM Programming Guide and
Language Environment Programming Guide.

* On the workstation, from a date/time callable service. For more information, see
the IBM COBOL Programming Guide for your platform.

SHIFT-OUT and SHIFT-IN

The SHIFT-OUT and SHIFT-IN special registers are supported; however,
the code pages for AlX, OS/2, and Windows do not recognize them as delimiters for

double-byte characters.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as alphanumeric
data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE"
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF"

These special registers represent shift-out and shift-in control characters without the
use of unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function wherever
an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when defining DBCS user-defined
words and when specifying DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

Part 1. COBOL Language Structure 15

Special Registers

DATA DIVISION.
WORKING-STORAGE.

01 DBCSGRP.
05 SO PIC X.
05 DBCSITEM PIC G(3) USAGE DISPLAY-1
05 SI PIC X.

PROCEDURE DIVISION.

MOVE SHIFT-OUT TO SO

MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI

DISPLAY DBCSGRP

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-CONTROL
The SORT-CONTROL special register is the name of an alphanumeric data item.

Under AIX, OS/2, and Windows, it is implicitly defined as:
01 SORT-CONTROL GLOBAL PICTURE X(160) VALUE "file name".

Where "file name" is the file name used by SMARTSort as the source for additional
sort/merge options.

Under MVS and VM it is implicitly defined as:
01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD"

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

Under MVS, you can provide a DD statement for the data set identified by the
SORT-CONTROL special register, and COBOL for MVS & VM will attempt to open the
data set at execution time. Any error will be diagnosed with an informational message.

You can specify the SORT-CONTROL special register in a function wherever an alpha-
numeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

Note that the sort control file takes precedence over the SORT special registers.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

16 COBOL Language Reference

Special Registers

For further information, see the IBM COBOL Programming Guide for your platform.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you can
use to specify the number of bytes of storage available to the sort utility. It has the
implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

Under AIX, OS/2, and Windows, the amount of storage indicated in the
SORT-CORE-SIZE special register does not include memory areas required by COBOL
library functions not related to the SORT or MERGE function. It also does not include
fixed amount of memory areas (modules, control blocks, fixed size work areas) required

for the sort and merge implementation. Workstation

Under MVS and CMS, SORT-CORE-SIZE can be used in place of the
MAINSIZE or RESINV control statements in the sort control file.

The '"MAINSIZE=" option control statement key word is equivalent to
SORT-CORE-SIZE with a positive value.

The 'RESINV=" option control statement key word is equivalent to
SORT-CORE-SIZE with a negative value.

The 'MAINSIZE=MAX" option control statement key word is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1. It has
the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO
Under AIX, OS/2, and Windows, references to the SORT-FILE-SIZE

special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

Under MVS and CMS, SORT-FILE-SIZE is equivalent to the 'FILSZ=Ennn'
control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Part 1. COBOL Language Structure 17

Special Registers

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item that is
available to both sort and merge programs.

Under AIX, OS/2, and Windows, references to the SORT-MESSAGE
special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

Under MVS and CMS, it has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT"

You can use the SORT-MESSAGE special register to specify the ddname of a data set
that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on the
'"MSGDDN=" control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an alpha-
numeric argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-MODE-SIZE
The SORT-MODE-SIZE special register is the name of a binary data item that you can
use to specify the length of variable-length records that occur most frequently. It has
the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO
Under AIX, OS/2, and Windows, references to the SORT-MODE-SIZE

special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

SORT-MODE-SIZE is equivalent to the 'SMS=" control statement in the
sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is available
to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

18 COBOL Language Reference

TALLY

Special Registers

It contains a return code of 0 (successful) or 16 (unsuccessful) at the completion of a
sort/merge operation. If the sort/merge is unsuccessful and there is no reference to this
special register anywhere in the program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are proc-
essed. The operation is terminated on the next input or output function for the SORT
or MERGE operation.

You can specify the SORT-RETURN special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

The TALLY special register is the name of a binary data item with the following defi-
nition:
01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer argument
is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the compila-
tion. WHEN-COMPILED is an alphanumeric data item with the implicit definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 1995, WHEN-COMPILED
would contain the value 04/27/9514.04.00.

WHEN-COMPILED can only be used as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Part 1. COBOL Language Structure 19

Literals

Note: The compilation date and time is also accessible via the date/time intrinsic func-
tion WHEN-COMPILED (See “WHEN-COMPILED” on page 506). That function sup-
ports 4-digit year values, and provides additional information.

Literals

A literal is a character-string whose value is specified either by the characters of which
it is composed, or by the use of a figurative constant. (See “Figurative Constants” on
page 8.) The literal types are nonnumeric , DBCS, and numeric .

Nonnumeric Literals
A nonnumeric literal is a character string enclosed in quotation marks ("), and can
contain any allowable character from the character set of the computer. The maximum
length of a nonnumeric literal is 160 characters.

The enclosing quotation marks are excluded from the literal when the program is com-
piled. An embedded quotation mark must be represented by a pair of quotation marks
(""). For example,

"THIS ISN""T WRONG"

As an IBM extension, you can use apostrophes as the literal delimiters instead of
quotes (independent of the APOST/QUOTE compiler option). An embedded apos-
trophe must be represented by a pair of apostrophes (''). For example,

'THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as the
closing delimiter for that literal. For example,

'THIS IS RIGHT®
"THIS IS RIGHT"
'THIS IS WRONG"

Any punctuation characters included within a nonnumeric literal are part of the value of
the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories are
described in “Classes and Categories of Data” on page 140.)

Table 4 on page 21 lists when nonnumeric literals with double-byte or multiple-byte
characters cannot be used.

20 COBOL Language Reference

Literals

Table 4. When Multi-Byte Characters are not Allowed in Nonnumeric Literals

MVS and VM

AIX, OS/2, and Windows

As a literal in the following:

ALPHABET clause
ASSIGN clause

CALL statement program-id
CANCEL statement
CLASS clause
CURRENCY SIGN clause
END METHOD header
END PROGRAM header
ENTRY statement
METHOD-ID paragraph
PADDING CHARACTER clause
PROGRAM-ID paragraph
RERUN clause

STOP statement

As a literal in the following:

ALPHABET clause

ASSIGN clause

CLASS clause

CURRENCY SIGN clause

END METHOD header
METHOD-ID paragraph
PADDING CHARACTER clause
RERUN clause

STOP statement

BASIS statement (basis-name)

COPY statement (text-name)

COPY statement (library-name)

Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte DBCS or EUC characters as alphanumeric literals (such as to initialize
display fields). However, COBOL semantics applied to literals that contain both multi-
byte and single-byte characters are not sensitive to the length (in bytes) of the indi-

vidual characters.

The rule of formation for mixed literals are as follows:

¢ A nonnumeric literal (whether it contains any multi-byte characters or not) is delim-
ited by either an opening and closing " or an opening and closing '. The " or '
must be represented as a single-byte character.

¢ Nonnumeric literals containing a multi-byte character cannot be continued. The
maximum length of a nonnumeric literal with multi-byte characters is limited only by
the available positions in Area B on a single source line.

Under MVS and VM, with the DBCS compiler option, the characters X'OE'
and X'OF' in a nonnumeric literal will be recognized as shift codes for DBCS charac-
ters. That is, the characters between paired shift codes will be recognized as DBCS
characters. Unlike a nonnumeric literal compiled under the NODBCS option, additional
syntax rules apply to DBCS characters in a nonnumeric literal.

Part 1. COBOL Language Structure 21

Literals

These nonnumeric literals with double-byte characters have the following format:

—— Nonnumeric Literals with Double-Byte Characters
"EBCDIC-data<D1D2>EBCDIC-data"

" The opening and closing delimiter (Alternatively, you can use apostrophes (') as
delimiters.)

< Represents the shift-out control character (X'0E")

> Represents the shift-in control character (X'0F")

Shift-out and shift-in control characters are part of the literal and must be paired with
zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for EBCDIC parts of the literal follow the rules for nonnumeric literals.
The syntax rules for DBCS parts of the literal follow the rules for DBCS literals. The
move and comparison rules for nonnumeric literals with double-byte characters are the
same as those for any nonnumeric literal.

The length of a nonnumeric literal with double-byte characters is its byte length,
including the shift control characters. The maximum length is limited by the available
space on one line in Area B. A nonnumeric literal with double-byte characters cannot
be continued.

A nonnumeric literal with double-byte characters is of the alphanumeric category.

Under COBOL for MVS & VM, COBOL statements process nonnumeric literals with
double-byte characters without sensitivity to the shift codes and character codes. The
use of statements that operate on a byte-to-byte basis (for example, STRING and
UNSTRING) can result in strings that are not valid mixtures of EBCDIC and double-byte
characters. You must be certain that the statements use DBCS characters. See IBM
COBOL for MVS & VM Programming Guide for more information on using nonnumeric
literals and data items with double-byte characters in statements that operate on a byte-

by-byte basis.

Hexadecimal notation can be used for nonnumeric literals. This hexadecimal notation
has the following format:

— Hexadecimal Notation Format for Nonnumeric Literals

X"hexadecimal—-digits"

X" The opening delimiter for hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

22 COBOL Language Reference

Literals

" The closing delimiter for the hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

Hexadecimal digits can be characters in the range '0' to '9', 'a' to 'f', and 'A' to
'F', inclusive. Two hexadecimal digits represent a single character in the
EBCDIC/ASCII character set. An even number of hexadecimal digits must be specified.
The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any nonnumeric literal. The opening
delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation of
nonnumeric literals.

The compiler will convert the hexadecimal literal into a normal nonnumeric literal.
Hexadecimal notation for nonnumeric literals can be used anywhere nonnumeric literals
can appear.

The padding character for hexadecimal notation of nonnumeric literals is the blank
(X'40"' for MVS and VM) or (X'20"' for AlX, OS/2, and Windows).

Nonnumeric literals can be null-terminated, with the following format:

— Format for Null-Terminated Nonnumeric Literals
Z"ddddd"

Z" The opening delimiter for null-terminated notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

" The closing delimiter for a null-terminated notation of a nonnumeric literal. (Alter-
natively, you can use apostrophes (') as delimiters.)

Null-terminated nonnumeric literals can be from 0 to 159 characters. You can specify
any character except X'00', which is the null string automatically appended to the end
of the literal. The length of the literal includes the terminating null character.

Null-terminated literals can be used anywhere a nonnumeric literal can be specified and
have the normal semantics of nonnumeric literals.

Both characters of the opening delimiter for null-terminated literals (Z" or Z') must be on
the same source line.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns the
number of characters in the literal prior to but not including the terminating null. (The
LENGTH special register does not support literal operands.)

Null-terminated literals are not supported in “ALL literal” constructions.

Part 1. COBOL Language Structure 23

Literals

Numeric Literals
A numeric literal is a character-string whose characters are selected from the digits 0
through 9, a sign character (+ or -), and the decimal point. If the literal contains no
decimal point, it is an integer. (In this manual, the word integer appearing in a format
represents a numeric literal of nonzero value that contains no sign and no decimal
point; any other restrictions are included with the description of the format.) The fol-
lowing rules apply:

e One through 18 digits are allowed.

¢ Only one sign character is allowed. If included, it must be the leftmost character of
the literal. If the literal is unsigned, it is a positive value.

¢ Only one decimal point is allowed. If a decimal point is included, it is treated as an
assumed decimal point (that is, as not taking up a character position in the literal).
The decimal point can appear anywhere within the literal except as the rightmost
character.

The value of a numeric literal is the algebraic quantity expressed by the characters in
the literal. The size of a numeric literal in standard data format characters is equal to
the number of digits specified by the user.

Numeric literals can be fixed-point or floating-point numbers.

Rules for Floating-point Literal Values:
e A floating-point literal is written in the form:

> mantissa E exponent—»<

+
+

e The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

¢ The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

e The exponent is represented by an E followed by an optional sign and 1 or 2 digits.

. Under MVS and VM, the magnitude of a floating-point literal value
must fall between 0.54E-78 and 0.72E+76. For values outside of this range, an
E-level diagnostic will be produced and the value will be replaced by either O or
0.72E+76, respectively.

J Under AlX, OS/2, and Windows, the magnitude of a floating-point
literal value must fall between:

— 32-bit representation—1.175(10-38) to 3.403(1038)
— 64-bit representation—2.225(10-308) to 1.798(10308)

Every numeric literal is in the numeric data category. (Data categories are described
under “Classes and Categories of Data” on page 140.)

24 COBOL Language Reference

Literals

DBCS Literals
Table 5 lists the formats and rules for DBCS literals. You can use either quotes or
apostrophes for the opening and closing delimiters.

Table 5. Format and Rules for Forming DBCS Literals

Rules

MVS and VM

AIX, OS/2, and Windows

Format

G"<D1D2D3>"
N"<D1D2D3>"

G"D1D2D3"
N"D1D2D3"

G" N"

Opening delimiters. They must be followed
immediately by a shift-out control character.

For N-literals, when embedded
quotes/apostrophes are specified as part of
DBCS characters in a DBCS literal, a single
embedded DBCS quote/apostrophe is repres-
ented by 2 DBCS quotes/apostrophes. If a
single embedded DBCS quote/apostrophe is
found, an E-level compiler message will be
issued and a second embedded DBCS
quote/apostrophe will be assumed.

Opening delimiters.

Represents the shift-out control character
(X'OE")

N/A

Represents the shift-in control character
(X'OF")

N/A

The closing delimiter. They must appear
immediately after the shift-in control char-
acter.

Single-byte quotation marks or apostrophes
can appear as part of DBCS characters in a
DBCS literal between the shift-out and shift-in
control characters.

The closing delimiter.

Character
Range

X'00' to X'FF' for both bytes, except for
X'OF7F"' (or X'OF7D" if using apostrophes
as the opening and closing delimiters).

Any double-byte character in a DBCS code
page.

Maximum
Length

28 Characters

N/A

Continuation
Rules

Cannot be continued across lines.

Cannot be continued across lines.

Part 1. COBOL Language Structure 25

Literals

When DBCS Literals are Allowed

DBCS literals are allowed in the following:
e Data Division

— In the VALUE clause of DBCS data description entries. If you specify a DBCS
literal in a VALUE clause for a data item, the length of the literal must not
exceed the size indicated by the data item's PICTURE clause. Explicitly or
implicitly defining a DBCS data item as USAGE DISPLAY-1 specifies that the
data item is to be stored in character form, one character to each 2 bytes.

— In the VALUE OF clause of file description entries.

e Procedure Division
— As the sending item when a DBCS or group item is the receiving item.
— In a relation condition when the comparand is a DBCS or group item.

— As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or ALL
DBCS literal. These are the only figurative constants that can be DBCS
literals. (The value of a DBCS space is X'4040'.)

When DBCS Literals are Not Allowed
DBCS literals are not allowed in the following:

¢ Non-Procedure Division

— ALPHABET clause

— ASSIGN clause

— CLASS clause

— CURRENCY SIGN clause

— END METHOD header

— END PROGRAM header

— METHOD-ID paragraph

— PADDING CHARACTER clause
— PROGRAM-ID paragraph

— RERUN clause

¢ Procedure Division

— CALL statement (program-name)

— CANCEL statement

— ENTRY statement

— INVOKE statement

— SET procedure-pointer to ENTRY literal
— STOP statement

¢ As a file assignment name
¢ As a function argument
e As a basis-name in a BASIS statement

e As a text-name or library-name in a COPY statement

26 COBOL Language Reference

Literals

PICTURE Character-Strings

Comments

A PICTURE character-string is composed of the currency symbol and certain combi-
nations of characters in the COBOL character set. PICTURE character-strings are
delimited only by the separator space, separator comma, separator semicolon, or sepa-
rator period.

A chart of PICTURE clause symbols appears in Table 12 on page 180.

A comment is a character-string that can contain any combination of characters from
the character set of the computer. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry (Identification Division)
This form is described under “Optional Paragraphs” on page 83.

Comment line (Any division)
This form is described under “Comment Lines” on page 37.

Character-strings that form comments can contain:

o Under MVS and VM, DBCS characters or a combination of DBCS and
EBCDIC characters.

o Under AIX, OS/2, and Windows any character from the code page
in effect.

Multiple comment lines containing DBCS/EUC strings are allowed. The embedding of
DBCS/EUC characters in a comment line must be done on a line-by-line basis.
DBCS/EUC words cannot be continued to a following line. No syntax checking for valid
DBCS/EUC strings is provided in comment lines.

Part 1. COBOL Language Structure 27

Separators

Separators

A separator is a string of one or more contiguous characters as shown in Table 6.

Table 6. Separator Characters

Separator Meaning
b Space
b Comma
b Period
b Semicolon
(Left parenthesis
) Right parenthesis
Colon
"b Quotation marks
‘b Apostrophe
X" Opening delimiter for a nonnumeric literal
z" Opening delimiter for a null-terminated nonnumeric literal
N*" Opening delimiter for a DBCS literal
G" Opening delimiter for a DBCS literal

== Pseudo-text delimiter

Rules for Separators

In the following description, {} enclose each separator. Anywhere a space is used as a
separator, or as part of a separator, more than one space can be used.

The IBM COBOL character set does not include a tab character (ASCII
code 9). You cannot use the tab character as a separator in IBM COBOL.

Workstation

Space {b}
A space can immediately precede or follow any separator except:

e The opening pseudo-text delimiter, where the preceding space is required.

e Within quotation marks. Spaces between quotation marks are considered part
of the nonnumeric literal; they are not considered separators.

Period {. b}, Comma {, b}, Semicolon {; b}
A separator comma is composed of a comma followed by a space; a separator
period is composed of a period followed by a space; a separator semicolon is com-
posed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as
shown in formats. The separator comma and separator semicolon can be used
anywhere the separator space is used.

¢ In the Identification Division , each paragraph must end with a separator
period.

¢ |n the Environment Division , the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL paragraphs

28 COBOL Language Reference

Separators

must each end with a separator period. In the FILE-CONTROL paragraph,
each File-Control entry must end with a separator period.

¢ In the Data Division , File (FD), Sort/Merge file (SD), and data description
entries must each end with a separator period.

¢ In the Procedure Division , separator commas or separator semicolons can
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (}...{)}
Except in pseudo-text, parentheses can appear only in balanced pairs of left and
right parentheses. They delimit subscripts, a list of function arguments, reference-
modifiers, arithmetic expressions, or conditions.

Colon{:}
The colon is a separator and is required when shown in general formats.

Quotation marks { "} ... {"}
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a sepa-
rator (space, comma, semicolon, period, right parenthesis, or pseudo-text delim-
iter). Quotation marks must appear as balanced pairs. They delimit nonnumeric
literals, except when the literal is continued (see “Continuation Lines” on page 35).

Apostrophes { '} ... {"}
An opening apostrophe must be immediately preceded by a space or a left paren-
thesis. A closing apostrophe must be immediately followed by a separator (space,
comma, semicolon, period, or right parenthesis). Apostrophes must appear as bal-
anced pairs. They delimit nonnumeric literals, except when the literal is continued
(see “Continuation Lines” on page 35).

Pseudo-text delimiters { b==} ... {==b}
An opening pseudo-text delimiter must be immediately preceded by a space. A
closing pseudo-text delimiter must be immediately followed by a separator (space,
comma, semicolon, or period). Pseudo-text delimiters must appear as balanced
pairs. They delimit pseudo-text. (See “COPY Statement” on page 516.)

Note: Any punctuation character included in a PICTURE character-string, a comment
character-string, or a nonnumeric literal is not considered as a punctuation character,
but rather as part of the character-string or literal.

Part 1. COBOL Language Structure 29

Statement and Clauses

Sections and Paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. For more information on sections, paragraphs, and statements, see
“Procedures” on page 231.

Statements and Clauses

Unless the associated rules explicitly state otherwise, each required clause or state-
ment must be written in the sequence shown in its format. If optional clauses or state-
ments are used, they must be written in the sequence shown in their formats. These
rules are true even for clauses and statements treated as comments.

The grammatical hierarchy follows this form:

¢ |dentification Division
Paragraphs
Entries
Clauses

¢ Environment Division
Sections
Paragraphs
Entries
Clauses
Phrases

¢ Data Division
Sections
Entries
Clauses
Phrases

¢ Procedure Division
Sections
Paragraphs
Sentences
Statements
Phrases

Entries

An entry is a series of clauses ending with a separator period. Entries are constructed
in the ldentification, Environment, and Data Divisions.

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the Identification, Environment, and
Data Divisions.

30 © Copyright IBM Corp. 1991, 1998

Statement and Clauses

Sentences

A sentence is a sequence of one or more statements, ending with a separator period.
Sentences are constructed in the Procedure Division.

Statements
A statement is a valid combination of a COBOL verb and its operands. It specifies an
action to be taken by the object program. Statements are constructed in the Procedure
Division. For descriptions of the different types of statements, see:

¢ “Imperative Statements” on page 261

e “Conditional Statements” on page 262

e “Scope of Names” on page 39

e “Compiler-Directing Statement” on page 512

Phrases

Each clause or statement in the program can be subdivided into smaller units called
phrases .

Part 1. COBOL Language Structure 31

Indicator Area

Reference Format

COBOL programs must be written in the COBOL reference format. Figure 1 shows
the reference format for a COBOL source line.

1|23 4|5|6|7|8]9]10|11]12]|13]...]71]72

Sequence Number Area Area A Area B
Indicator Area

Figure 1. Reference Format for COBOL Source Line

The following areas are described below in terms of a 72-character line:

Sequence Number Area
Columns 1 through 6

Indicator Area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

Sequence Number Area

The sequence number area may be used to label a source statement line. The content
of this area may consist of any character in the character set of the computer.

Indicator Area
Use the indicator area to specify:

e The continuation of words or nonnumeric literals from the previous line onto the
current line

¢ The treatment of text as documentation

e Debugging lines

See “Continuation Lines” on page 35, “Comment Lines” on page 37, and “Debugging
Lines” on page 38.

The indicator area can be used for source listing formatting. A slash (/") placed in the
indicator column will cause the compiler to start a new page for the source listing, and
the corresponding source record to be treated as a comment. The effect may be
dependent on the LINECOUNT compiler option. For information on the LINECOUNT
compiler option, see the IBM COBOL Programming Guide for your platform.

32 © Copyright IBM Corp. 1991, 1998

Area A

Area A
The following items must begin in Area A:

¢ Division header

e Section header

e Paragraph header or paragraph name

¢ Level indicator or level-number (01 and 77)

¢ DECLARATIVES and END DECLARATIVES

e End program, end class, and end method header

Division Header
A division header is a combination of words, followed by a separator period, that indi-
cates the beginning of a division:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
A division header (except when a USING phrase is specified with a Procedure Division

header) must be immediately followed by a separator period. Except for the USING
phrase, no text may appear on the same line.

Section Header
In the Environment and Procedure Divisions, a section header indicates the beginning
of a series of paragraphs; for example:

INPUT-OUTPUT SECTION.

In the Data Division, a section header indicates the beginning of an entry; for example:
FILE SECTION.
LINKAGE SECTION.
WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph Header or Paragraph Name
A paragraph header or paragraph name indicates the beginning of a paragraph.

In the Environment Division, a paragraph consists of a paragraph header followed by
one or more entries. For example:

OBJECT-COMPUTER. computer-name

In the Procedure Division, a paragraph consists of a paragraph-name followed by one
or more sentences.

Part 1. COBOL Language Structure 33

Area B

Level Indicator (FD and SD) or Level-Number (01 and 77)
A level indicator can be either FD or SD. It must begin in Area A and be followed by a
space. (See “File Section” on page 147.) A level-number that must begin in Area A is
a 1- or 2-digit integer with a value of 01 or 77. It must be followed by a space or
separator period.

DECLARATIVES and END DECLARATIVES
DECLARATIVES and END DECLARATIVES are key words that begin and end the
declaratives part of the source program.

In the Procedure Division, each of the key words DECLARATIVES and END DECLAR-
ATIVES must begin in Area A and be followed immediately by a separator period; no
other text may appear on the same line. After the key words END DECLARATIVES, no
text may appear before the following section header. (See “Declaratives” on

page 230.)

End Program, End Class, and End Method Headers
The “end” headers are a combination of words, followed by a separator period, that
indicate the end of a COBOL source program, class definition, or method definition.
For example:

END PROGRAM PROGRAM-NAME.
END CLASS CLASS-NAME.
END METHOD METHOD-NAME.

For Programs
Program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost program
that contains no nested programs and is not followed by another batch program,
must end with an END PROGRAM header.

For Classes
Class-name must be identical to the class-name of the corresponding CLASS-ID
paragraph.

For Methods
Method-name must be identical to the method-name of the corresponding
METHOD-ID paragraph.

Area B
The following items must begin in Area B:

e Entries, sentences, statements, clauses
¢ Continuation lines

34 COBOL Language Reference

Area B

Entries, Sentences, Statements, Clauses
The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is not a
comment line. Successive sentences or entries either begin in Area B of the same line
as the preceding sentence or entry or in Area B of the next nonblank line that is not a
comment line.

Within an entry or sentence, successive lines in Area B may have the same format, or
may be indented to clarify program logic. The output listing is indented only if the input
statements are indented. Indentation does not affect the meaning of the program. The
programmer can choose the amount of indentation, subject only to the restrictions on
the width of Area B. See also “Sections and Paragraphs” on page 30.

Continuation Lines
Any sentence, entry, clause, or phrase that requires more than one line can be con-
tinued in Area B of the next line that is neither a comment line nor a blank line. The
line being continued is a continued line ; the succeeding lines are continuation lines
Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character of
the preceding line is assumed to be followed by a space.

DBCS literals and user-defined words containing multi-byte characters cannot be con-
tinued.

Both characters making up the opening delimiter must be on the same line for the:

e Hexadecimal notation of a nonnumeric literal (X" or X")
e Hexadecimal notation of a null-terminated nonnumeric literal (Z" or Z")

If there is a hyphen in the indicator area of a line, the first nonblank character of this
continuation line immediately follows the last nonblank character of the continued line
without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation mark, all
spaces at the end of the continued line (through column 72) are considered to be part
of the literal. The continuation line must contain a hyphen in the indicator area, and the
first nonblank character must be a quotation mark. The continuation of the literal
begins with the character immediately following the quotation mark.

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in column 72, the continuation line must start with two consecutive quotation
marks. This will result in a single quotation mark as part of the value of the nonnumeric
literal.

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in Area B, the continuation line may start with a single quotation mark. This will
result in two consecutive nonnumeric literals instead of one continued nonnumeric
literal.

Part 1. COBOL Language Structure 35

Area B

Both characters making up the pseudo-text delimiter separator “==" must be on the
same line.

To continue a literal such that the continued lines and the continuation lines are part of
one literal:

Code a hyphen in the indicator area of each continuation line.

Do not terminate the continued lines with a single quotation mark followed by a
space.

Code the literal value using all columns of the continued lines, up to and including
column 72.

Code a quotation mark before the first character of the literal on each continuation
line.

Terminate the last continuation line with a single quotation mark followed by a
space.

Given the following examples, the number and size of literals created are as follows:

Literal 000001 is interpreted as one literal that is 120 bytes long. Each character
between the starting quotation mark and up to and including column 72 of con-
tinued lines are counted as part of the literal.

Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at the
end of each continued line are counted as part of the literal because the continued
lines do not end with a quotation mark.

Literal 000010 is interpreted as three separate literals, each having a length of 50,
50, and 20, respectively. The quotation mark with the following space terminates
the continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for non-
level 88 data items.

36 COBOL Language Reference

Area A or Area B

Example
P A R S S S PO SO SO SO SUNNUE NN ; SRS S S
000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHITTITIIT11JJJJJJJJIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM"
000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
- "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJIIIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM®
000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
- "GGGGGGGGGGHHHHHHHHHHITITIITIITIJJJJIIIIIIIKKKKKKKKKK"
- "LLLLLLLLLLMMMMMMMMMM®

Note: To code a continued literal where the length of each continued segment of the
literal is less than the length of Area-B, adjust the starting column such that the last
character of the continued segment is in column 72.

Area A or Area B
The following items may begin in either Area A or Area B:

e Level-numbers

e Comment lines

e Compiler-directing statements
¢ Debugging lines

¢ Pseudo-text

Level-Numbers
A level-number that may begin in Area A or B is a 1- or 2-digit integer with a value of
02 through 49; 66, or 88. A level-number that must begin in Area A is a 1- or 2-digit
integer with a value of 01 or 77. It must be followed by a space or a separator period.
For more information, see “Level-Numbers” on page 162.

Comment Lines
A comment line is any line with an asterisk (*) or slash (/) in the indicator area (column
7) of the line. The comment may be written anywhere in Area A and Area B of that
line, and may consist of any combination of characters from the character set of the
computer. A comment line may be placed anywhere in the program following the Iden-
tification Division header.

Comment lines are permitted to appear before the Identification Division, but they must
follow any control cards (for example, PROCESS or CBL).

Note: Comments intermixed with control cards could nullify some of the control cards
and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or a
slash (/) in the indicator area.

Part 1. COBOL Language Structure 37

Area A or Area B

An asterisk (*) comment line is printed on the next available line in the output listing.
The effect may be dependent on the LINECOUNT compiler option. See “LINECOUNT”
compiler option in the IBM COBOL Programming Guide for your platform. A slash (/)
comment line is printed on the first line of the next page, and the current page of the
output listing is ejected.

The compiler treats a comment line as documentation, and does not check it syntac-
tically.

Compiler-Directing Statements

Most compiler-directing statements may start in either Area A or Area B, including
COPY and REPLACE.

As an IBM extension BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT,
INSERT, SKIP1/2/3, and TITLE can also start in Area A or Area B.

Compiler Directives (Workstation Only)

Compiler directives can start only in Area B. Currently, the only compiler directive is
CALLINTERFACE.

Debugging Lines

Pseudo-Text

Blank Lines

A debugging line is any line with a 'D' (or 'd') in the indicator area of the line.
Debugging lines can be written in the Environment Division (after the
OBJECT-COMPUTER paragraph), the Data Division, and the Procedure Division. If a
debugging line contains only spaces in Area A and Area B, it is considered a blank line.

See “WITH DEBUGGING MODE” on page 87.

The character-strings and separators comprising pseudo-text may start in either Area
A or Area B. If, however, there is a hyphen in the indicator area (column 7) of a line
which follows the opening pseudo-text delimiter, Area A of the line must be blank, and
the rules for continuation lines apply to the formation of text words.

A blank line contains nothing but spaces from column 7 through column 72. A blank
line may appear anywhere in a program.

38 COBOL Language Reference

Scope of Names

Scope of Names

A COBOL resource is any resource in a COBOL program that is referenced via a user-
defined word. You can use names to identify COBOL resources. This section
describes COBOL names and their scope. It explains the range of where the names
can be referenced and the range of their usability and accessibility.

Types of Names

In addition to identifying a resource, a hame can have global or local attributes. Some
names are always global, some names are always local, and some names are either
local or global depending on specifications in the program in which the names are
declared.

For Programs
A global name can be used to refer to the resource with which it is associated
both:

e From within the program in which the global name is declared

¢ From within any other program that is contained in the program that declares
the global name

You use the GLOBAL clause in the data description entry to indicate that a name
is global. For more information on using the GLOBAL clause, see “GLOBAL
Clause” on page 170.

A local name can be used only to refer to the resource with which it is associated
from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name decla-
ration in a data description entry does not include the GLOBAL clause, the name is
local.

For Classes and Methods
Names declared in a class definition are global to all the methods contained in that
class definition. All names declared in methods are implicitly local.

Note: Specific rules sometimes prohibit specifying the GLOBAL clause for certain data
description, file description, or record description entries.

The following list indicates the names you can use and whether the name can be local
or global:

data-name
Data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name, or in another entry to which that data
description entry is subordinate.

© Copyright IBM Corp. 1991, 1998 39

Scope of Names

file-name
File-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name.

record-name
Record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record description
that declares the record-name, or in the case of record description entries in the
File Section, if the GLOBAL clause is specified in the file description entry for the
file name associated with the record description entry.

condition-name
Condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if that entry is
subordinate to another entry that specifies the GLOBAL clause.

A condition-name that is declared within the Configuration Section is always global.

program-name
Program-name assigns a name to a program, either external or internal (nested).
For more information, see “Conventions for Program-Names” on page 66.

A program-name is neither local nor global. For more information, see “Con-
ventions for Program-Names” on page 66.

method-name
Method-name assigns a name to a method. A method-name is neither local nor

global.

section-name
Section-name assigns a name to a section in the Procedure Division.

A section-name is always local.
paragraph-name
Paragraph-name assigns a name to a paragraph in the Procedure Division.

A paragraph-name is always local.

basis-name
Basis-names are treated consistently as defined for text-names without the library-

name qualification.

library-name
Under MVS and VM, library-name specifies the COBOL library that the

compiler uses for a given source program compilation.

A library-name is external to the program and can be referenced by any COBOL
program if the compiler system supports the associated library and the entities ref-
erenced are known to that system.

Under AIX, OS/2, and Windows, a library-name is used to identify the
path for the library text.

40 COBOL Language Reference

Scope of Names

If you specify library-name with a literal, it is treated as the actual path name. If you
specify library-name with a user-defined word, the name is used as an environment
variable and the value of the environment variable is used for the path names(s) to

locate the COPY text. For details on path nhames, see “COPY Statement” on

page 516.

text-name

Under MVS and VM, text-name assigns a name to library text. A text-
name is external to the program and can be referenced by any COBOL program if
the compiler system supports the associated library and the entities referenced are
known to that system.

Under AIX, OS/2, and Windows, a text-name is used to identify the
file for the COPY text. For details, see “COPY Statement” on page 516.

Workstation

alphabet-name
Alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

An alphabet-name is always global.

class-name
Class-name assigns a name to the proposition in the SPECIAL-NAMES paragraph
of the Environment Division for which a truth value can be defined.

A class-name is always global.

object-oriented class-name
Object-oriented class-name assigns a hame to a class, subclass, or metaclass. An
object-oriented class-name is always global.

object-oriented class Working-Storage
Object-oriented class Working-Storage data items are always global to the methods
contained in the class definition. They are accessible from any contained method.

mnemonic-name
Mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
Symbolic-character specifies a user-defined figurative constant.

A symbolic-name is always global.

index-name
Index-name assigns a name to an index associated with a specific table.

If a data item possessing the GLOBAL attribute includes a table accessed with an
index, that index also possesses the GLOBAL attribute. In addition, the scope of
that index-name is identical to the scope of the data-name that includes the table.

Scope of Names 41

External and Internal Resources

External and Internal Resources

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored. The
storage associated with a data item or a file connector can be external or internal to
the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource is
associated with the run unit rather than with any particular program or method within
the run unit. An external resource can be referenced by any program or method in the
run unit that describes the resource. References to an external resource from different
programs or methods using separate descriptions of the resource are always to the
same resource. In a run unit, there is only one representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the Working-Storage Section is given the external attribute
by the presence of the EXTERNAL clause in its data description entry. Any data item
described by a data description entry subordinate to an entry describing an external
record also attains the external attribute. If a record or data item does not have the
external attribute, it is part of the internal data of the program or method in which it is
described.

Two programs or methods in a run unit can reference the same file connector in the
following circumstances:

e An external file connector can be referenced from any program or method that
describes that file connector.

e |If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program, or in any program that directly or indirectly contains the con-
taining program.

Two programs or methods in a run unit can reference common data in the following
circumstances:

e The data content of an external data record can be referenced from any program
or method provided that program or method has described that data record.

e If a program is contained within another program, both programs can refer to data
possessing the global attribute either in the program or in any program that directly
or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records, are
always internal to the program or method describing the file-name. If the EXTERNAL

42 COBOL Language Reference

Resolution of Names

clause is included in the file description entry, the data records and the data items
attain the external attribute.

Resolution of Names

When a program, program B, is directly contained within another program, program A,
both programs can define a condition-name, a data-name, a file-name, or a record-
name using the same user-defined word. When such a duplicated name is referenced
in program B, the following steps determine the referenced resource (note, these rules
also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names which are defined in
program B and all global names defined in program A and in any programs which
directly or indirectly contain program A. Using this set of names, the normal rules
for qualification and any other rules for uniqueness of reference are applied until
one or more resource is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one of them can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following applies:

¢ |If the name is declared in program B, the resource in program B is the refer-
enced resource.

¢ |f the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A.

— The resource in the containing program if the name is declared in the
program containing program A.

This rule is applied to further containing programs until a valid resource is
found.

Scope of Names 43

Uniqueness of Reference

Referencing Data Names, Copy Libraries, and Procedure Division

Names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. This section contains the rules for quali-
fication and for explicit and implicit data references.

Uniqueness of Reference

Qualification

44

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference which uniquely identifies that resource. To
ensure uniqueness of reference, a user-defined name can be qualified, subscripted, or
reference-modified.

When the same name has been assigned in separate programs to two or more occur-
rences of a resource of a given type, and when qualification by itself does not allow the
references in one of those programs to differentiate between the identically named
resources, then certain conventions that limit the scope of names apply. The con-
ventions ensure that the resource identified is that described in the program containing
the reference. For more information on resolving program-names, see “Resolution of
Names” on page 43.

Unless otherwise specified by the rules for a statement, any subscripts and reference
modification are evaluated only once as the first step in executing that statement.

A name can be made unique if it exists within a hierarchy of names by specifying one
or more higher-level names in the hierarchy. The higher-level names are called qual-
ifiers , and the process by which such names are made unique is called qualification .

Qualification is specified by placing one or more phrases after a user-specified name,
with each phrase made up of the word IN or OF followed by a qualifier (IN and OF are
logically equivalent).

In any hierarchy, the data hame associated with the highest level must be unique if it is
referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

e EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
e EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary

© Copyright IBM Corp. 1991, 1998

Data Attribute

Uniqueness of Reference

Quialification Rules
The rules for qualifying a hame are:

¢ A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

¢ Each qualifier must be of a higher level than the name it qualifies, and must be
within the same hierarchy.

¢ |f there is more than one combination of qualifiers that ensures uniqueness, then
any of these combinations can be used.

Specification
Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data attri-
bute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted and the
symbol N is not specified in the PICTURE clause, the default is USAGE DISPLAY,
which is the implicit data attribute.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed (for DBCS
items). If, however, you specify USAGE DISPLAY in COBOL coding, it becomes an
explicit data attribute.

Identical Names

When programs are directly or indirectly contained within other programs, each program
can use identical user-defined words to nhame resources. With identically-named
resources, a program will reference the resource which that program describes rather
than the same-named resource described in another program, even when it is a dif-
ferent type of user-defined word.

These same rules apply to classes and their contained methods.

References to COPY Libraries

—— Format

»>—text-name-1

\4
A

IN:,—Z ibrary—name-lJ
OF:

If more than one COBOL library is available to the compiler during compilation, as an
IBM extension, text-name-1 need not be qualified each time it is referenced; a qualifica-
tion of SYSLIB is assumed.

For rules on referencing COPY libraries, see “COPY Statement” on page 516.

Part 1. COBOL Language Structure 45

Uniqueness of Reference

References to Procedure Division Names

— Format 1

\4
A

»»—paragraph-name-1

IN section-name—]J
LEOF]_

—— Format 2

\4
A

»»—section-name-1

Procedure Division names that are explicitly referenced in a program must be unique
within a section. A section-name, described under “Procedures” on page 231, is the
highest and only qualifier available for a paragraph-name and must be unique if refer-
enced.

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to within the section in
which it appears. A paragraph-name or section-name appearing in a program cannot
be referenced from any other program.

References to Data Division Names

Simple Data Reference

The most basic method of referencing data items in a COBOL program is simple data
reference , which is data-name-1 without qualification, subscripting, or reference modifi-
cation. Simple data reference is used to reference a single elementary or group item.

— Format

»»—data-name-1

A\
A

data-name-1
Can be any data description entry.

Data-name-1 must be unique in a program.

Identifier

When used in a syntax diagram in this manual, the term identifier refers to a valid
combination of a data-name or function-identifier with its qualifiers, subscripts, and
reference-modifiers as required for uniqueness of reference. Rules for identifiers asso-
ciated with a format can, however, specifically prohibit qualification, subscripting, or
reference-modification.

The term data-name refers to a name that must not be qualified, subscripted, or refer-
ence modified, unless specifically permitted by the rules for the format.

e For a description of qualification, see “Qualification” on page 44.

46 COBOL Language Reference

Uniqueness of Reference

e For a description of subscripting, see “Subscripting” on page 49.
¢ For a description of reference modification, see “Reference Modification” on
page 52.

—— Format 1

»»—data-name-1 ' L-[] |]
INj—data—name—Z L-[INj——file—name—l
OF OF

! |
|—(—subscript—)J

\4

\ 4

v

\ 4
A

|—(—Zeftmost—character-pos ition :—L—_l—)J
length

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

—— Format 1

»—Econdition—name—l v |
duta—name—]—J IN:’—data—name—Z—J
OF

v

A

\4
A

INj—fi Ze-ncrrne—lJ
OF

—— Format 2
»»>—L INAGE-COUNTER

v
A

IN fi Ze—name-ZJ
EOFj

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in that program containing the
Configuration Section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

Must be unique within this program.

Part 1. COBOL Language Structure 47

Uniqueness of Reference

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description entry
containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by the FD or SD entry in the Data Division. File-name-2 must
be unique within this program.

Duplication of data-names must not occur in those places where the data-name cannot
be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose level-
number is 01 that includes the EXTERNAL clause must not be the same data-name
specified for any other data description entry that includes the EXTERNAL clause.

In the same Data Division, the data description entries for any two data items for which
the same data-name is specified must not include the GLOBAL clause.

Data Division names that are explicitly referenced must either be uniquely defined or
made unique through qualification. Unreferenced data items need not be uniquely
defined. The highest level in a data hierarchy must be uniquely named, if referenced.
This is a data item associated with a level indicator (FD or SD in the File Section) or
with a level-number 01. Data items associated with level-numbers 02 through 49 are
successively lower levels of the hierarchy.

Condition-name

—— Format 1 (Data Division)

»»—condition-name-1

|
IN:,—data—name—l—I IN:,—fi le—name—l—I
OF OF

A\
A

] L(_W_)J

—— Format 2 (Special-Names Paragraph)
!

A\
A

»»—condition-name-1

. |
L—[IN]—mnemonic-name—l
OF

condition-name-1
Can be referenced by statements and entries either in the program containing the
definition of condition-name-1, or in a program contained within that program.

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names con-
ventions by themselves ensure uniqueness of reference.

48 COBOL Language Reference

Subscripting

Uniqueness of Reference

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable itself must be used to make the
condition-name unique.

If references to a conditional variable require subscripting, reference to any of its
condition-names also requires the same combination of subscripting.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

mnemonic-name-1
For information on acceptable values for mnemonic-name-1, see
“SPECIAL-NAMES Paragraph” on page 89.

Subscripting is a method of providing table references through the use of subscripts.
A subscript is a positive integer whose value specifies the occurrence number of a
table element.

—— Format
»—Econdition-name—l v | >
data-name-]é IN:’—data-name-ZJ
OF
> N (v integer-1 |)—>e
IN:I—file-narne—I ALL
OF data-name-3 .
+ integer-2
Trintes
index-name-1 .
+ integer-3
rrintes

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause or
must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

Part 1. COBOL Language Structure 49

Uniqueness of Reference

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified. Data-name-3 cannot be a windowed date field.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being refer-
enced which contains an INDEXED BY phrase specifying that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any quali-
fication for the name of the table element. The number of subscripts in such a refer-
ence must equal the number of dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS clause in the hier-
archy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively
less inclusive dimensions of the data organization. If a multi-dimensional table is
thought of as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive table being
the minor table, the subscripts are written from left to right in the order major, interme-
diate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references may also be reference modified. See the third example on
page 54. A reference to an item must not be subscripted unless the item is a table
element or an item or condition-name associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

* In a USE FOR DEBUGGING statement

¢ As the subject of a SEARCH statement

¢ In a REDEFINES clause

¢ Inthe KEY is phrase of an OCCURS clause

50 COBOL Language Reference

Uniqueness of Reference

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum number
of occurrences of the item as specified in the OCCURS clause.

Subscripting Using Data-Names

When a data-name is used to represent a subscript, it can be used to reference items
within different tables. These tables need not have elements of the same size. The
same data-name can appear as the only subscript with one item and as one of two or
more subscripts with another item. A data-name subscript can be qualified; it cannot
be subscripted or indexed. For example, valid subscripted references to TABLE-THREE
— assuming that SUB1, SUB2, and SUB3 are all items subordinate to SUBSCRIPT-ITEM —
include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting Using Index-Names (Indexing)

Indexing allows such operations as table searching and manipulating specific items. To
use indexing you associate one or more index-names with an item whose data
description entry contains an OCCURS clause. An index associated with an index-
name acts as a subscript, and its value corresponds to an occurrence number for the
item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its
table, is an optional part of the OCCURS clause. There is no separate entry to
describe the index associated with index-name. At run time, the contents of the index
corresponds to an occurrence number for that specific dimension of the table with
which the index is associated.

The initial value of an index at run time is undefined, and the index must be initialized
before it is used as a subscript. An initial value is assigned to an index with one of the
following:

¢ The PERFORM statement with the VARYING phrase
¢ The SEARCH statement with the ALL phrase
e The SET statement

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated with
that table.

As an IBM extension, an index-name can be used to reference any table. However,
the table element length of the table being referenced and of the table that the index-
name is associated with should match. Otherwise, the reference will not be to the
same table element in each table, and you might get run-time errors.

Part 1. COBOL Language Structure 51

Uniqueness of Reference

Data that is arranged in the form of a table is often searched. The SEARCH statement
provides facilities for producing serial and non-serial searches. It is used to search for a
table element that satisfies a specific condition and to adjust the value of the associated
index to indicate that table element.

To be valid during execution, an index value must correspond to a table element occur-
rence of neither less than one, nor greater than the highest permissible occurrence
number.

For more information on index-names, see “INDEXED BY Phrase” on page 175.

Relative Subscripting

In relative subscripting , the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and an unsigned integer
literal.

As an IBM extension, the integer can be positively signed.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or down
by the value of the integer. The use of relative indexing does not cause the program to
alter the value of the index.

Reference Modification
Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

—— Format

data-name-1 [>

FUNCTION—function-name-1 L J
(—¥-argunent-1-—)

»—(—leftmost-character-position: B n
length

A\
A

data-name-1
Must reference a data item whose usage is DISPLAY or DISPLAY-1.

Data-name-1 can be qualified or subscripted. Data-name-1 cannot be a windowed
date field.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position
must result in a positive nonzero integer that is less than or equal to the number of
characters in the data item referenced by data-name-1.

The evaluation of leftmost-character-position must not result in a windowed date
field.

52 COBOL Language Reference

Uniqueness of Reference

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must be
less than or equal to the number of characters in data-name-1. If length is omitted,
than the length used will be equal to the number of characters in data-name-1 plus
one minus leftmost-character-position. \WWhen data-name-1 is a DISPLAY-1 data
item, reference modification refers to the starting position and length of the data
item being referenced in characters, not bytes. The evaluation of /length must
result in a positive nonzero integer.

The evaluation of /length must not result in a windowed date field.

Unless otherwise specified, reference modification is allowed anywhere an identifier ref-
erencing an alphanumeric data item is permitted.

Each character of data-name-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned
the ordinal number one. If the data description entry for data-name-1 contains a SIGN
IS SEPARATE clause, the sign position is assigned an ordinal number within that data
item.

If data-name-1 is described as numeric, numeric-edited, alphabetic, or alphanumeric-
edited, it is operated upon for purposes of reference modification as if it were redefined
as an alphanumeric data item of the same size as the data item referenced by
data-name-1.

If data-name-1 is an expanded date field, then the result of reference modification is a
non-date.

Reference modification creates a unique data item which is a subset of data-name-1 or
by function-name-1 and its arguments, if any. This unique data item is considered an
elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has the class and category
of alphanumeric. When data-name-1 is reference-modified, the unique data item has
the same class and category as that defined for the data item referenced by
data-name-1; however, if the category of data-name-1 is numeric, numeric-edited, or
alphanumeric-edited, the unique data item has the class and category alphanumeric.

If the category of data-name-1 is external floating-point, the unique data item has the
class and category alphanumeric.

If length is not specified, the unique data item created extends from and includes the

character identified by leftmost-character-position up to and including the rightmost
character of the data item referenced by data-name-1.

Part 1. COBOL Language Structure 53

Uniqueness of Reference

Evaluation of Operands
Reference modification for an operand is evaluated as follows:

e If subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscript.

e If subscripting is not specified for the operand, the reference modification is evalu-
ated at the time subscripting would be evaluated if subscripts had been specified.

Reference Modification Examples
The following statement transfers the first 10 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(10).
MOVE WHOLE-NAME(1:10) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).
MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third occurrence
of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-Identifier
A function-identifier is a syntactically correct sequence of character strings and separa-
tors that uniquely references the data item resulting from the evaluation of a function.

— Format
»»—FUNCTION—function-name-1

L(—W‘—)J

\ 4
A

|—r'eference—madifier‘J

54 COBOL Language Reference

Uniqueness of Reference

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see “Intrinsic Functions” on page 447.

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

reference-modifier
May be specified only for functions of the category alphanumeric

A function-identifier that makes reference to an alphanumeric function may be specified
anywhere that an identifier is permitted and where references to functions are not spe-
cifically prohibited, except as follows:

¢ As a receiving operand of any statement

¢ Where a data item is required to have particular characteristics (such as class and
category, size, sign, and permissible values) and the evaluation of the function
according to its definition and the particular arguments specified would not have
these characteristics.

A function-identifier that makes reference to an integer or numeric function may be
used wherever an arithmetic expression is allowed.

Part 1. COBOL Language Structure 55

Transfer of Control

Transfer of Control

56

In the Procedure Division, unless there is an explicit control transfer or there is no next
executable statement, program flow transfers control from statement to statement in the
order in which the statements are written. (See Note below.) This normal program flow
is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of
a procedure branching statement. The following examples show implicit transfers of
control, overriding statement-to-statement transfer of control:

e After execution of the last statement of a procedure being executed under control
of another COBOL statement, control implicitly transfers. (COBOL statements that
control procedure execution are, for example: MERGE, PERFORM, SORT, and
USE.) Further, if a paragraph is being executed under the control of a PERFORM
statement which causes iterative execution, and that paragraph is the first para-
graph in the range of that PERFORM statement, an implicit transfer of control
occurs between the control mechanism associated with that PERFORM statement
and the first statement in that paragraph for each iterative execution of the para-
graph.

e During SORT or MERGE statement execution, control is implicitly transferred to an
input or output procedure.

e During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

e At the end of execution of any declarative procedure, control is implicitly transferred
back to the control mechanism associated with the statement that caused its exe-
cution.

COBOL also provides explicit control transfers through the execution of any procedure
branching, program call, or conditional statement. (Lists of procedure branching and
conditional statements are contained in “Statement Categories” on page 261.)

Note: The term “next executable statement” refers to the next COBOL statement to
which control is transferred, according to the rules given above. There is no next exe-
cutable statement under these circumstances:

e When the program contains no Procedure Division

¢ Following the last statement in a declarative section when the paragraph in which it
appears is not being executed under the control of some other COBOL statement

¢ Following the last statement in a program or method when the paragraph in which
it appears is not being executed under the control of some other COBOL statement
in that program

¢ Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this

© Copyright IBM Corp. 1991, 1998

Transfer of Control

last statement of the declarative section is not also the last statement of the proce-
dure that is the exit of the active PERFORM statement

¢ Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

¢ Following a GOBACK statement that transfers control outside the COBOL program

e Following an EXIT METHOD statement that transfers control outside the COBOL
method

e The end program or end method header
When there is no next executable statement and control is not transferred outside the
COBOL program, the program flow of control is undefined unless the program exe-

cution is in the nondeclarative procedures portion of a program under control of a CALL
statement, in which case an implicit EXIT PROGRAM statement is executed.

Similarly, if control reaches the end of the Procedure Division of a method, and there is
no next executable statement, an implicit EXIT METHOD statement is executed.

Part 1. COBOL Language Structure 57

Millennium Language Extensions and Date Fields

Millennium Language Extensions and Date Fields

Many applications use 2 digits rather than 4 digits to represent the year in date fields,
and assume that these values represent years from 1900 to 1999. This compact date
format works well for the 1900s, but it does not work for the year 2000 and beyond
because these applications interpret “00” as 1900 rather than 2000, producing incorrect
results.

The millennium language extensions are designed to allow applications that use 2-digit
years to continue performing correctly in the year 2000 and beyond, with minimal mod-
ification to existing code. This is achieved using a technique known as windowing,
which removes the assumption that all 2-digit year fields represent years from 1900 to
1999. Instead, windowing enables 2-digit year fields to represent years within any
100-year range, known as a century window .

For example, if a 2-digit year field contains the value 15, many applications would inter-
pret the year as 1915. However, with a century window of 1960-2059, the year would
be interpreted as 2015.

The millennium language extensions provide support for the most common operations
on date fields: comparisons, moving and storing, incrementing and decrementing. This
support is limited to date fields of certain formats; for details, see “DATE FORMAT
Clause” on page 164.

For information on supported operations and restrictions when using date fields, see
“Restrictions On Using Date Fields” on page 166.

Millennium Language Extensions Syntax

58

The millennium language extensions introduce the following language elements to IBM
COBOL:

e The DATE FORMAT clause in data description entries, which defines data items
as date fields.

e The following intrinsic functions:

DATEVAL Converts a non-date to a date field.
UNDATE Converts a date field to a non-date.
YEARWINDOW Returns the first year of the century window specified by the

YEARWINDOW compiler option.
For details on using the millennium language extensions in applications, see the IBM

COBOL Programming Guide for your platform, or the IBM COBOL Millennium Lan-
guage Extensions Guide.

© Copyright IBM Corp. 1991, 1998

Millennium Language Extensions and Date Fields

Note: The millennium language extensions have no effect unless:
. IBM VisualAge COBOL Millennium Language Extensions for
MVS & VM (program number 5654-MLE) is installed with your compiler.

e Your COBOL program is compiled using the DATEPROC compiler option
(with the century window specified by the YEARWINDOW compiler option).

Terms and Concepts

This book uses the following terms when referring to the millennium language exten-
sions.

Date Field
A date field can be any of the following:

¢ A data item whose data description entry includes a DATE FORMAT clause.
e A value returned by one of the following intrinsic functions:

DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DATEVAL
DAY-OF-INTEGER
DAY-TO-YYYYDDD
YEAR-TO-YYYY
YEARWINDOW

¢ The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY YYYYDDD
of the ACCEPT statement.

¢ The result of certain arithmetic operations (for details, see “Arithmetic with Date
Fields” on page 235).

The term date field refers to both expanded date fields and windowed date fields .

Windowed Date Field
A windowed date field is a date field that contains a windowed year . A windowed year
consists of 2 digits, representing a year within the century window.

Part 1. COBOL Language Structure 59

Millennium Language Extensions and Date Fields

Expanded Date Field
An expanded date field is a date field that contains an expanded year . An expanded
year consists of 4 digits.

Note: The main use of expanded date fields is to provide correct results when these
are used in combination with windowed date fields; for example, where migration to
4-digit year dates is not complete. If all the dates in an application use 4-digit years,
there is no need to use the millennium language extensions.

Year-Last Date Field

A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a limited
number of operations, typically involving another date with the same (year-last) date
format, or a non-date.

Date Format
Date format refers to the date pattern of a date field, specified either:

e Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function argument-2
or

e Implicitly, by statements and intrinsic functions that return date fields (for details,
see “Date Field” on page 59)

Compatible Date Field
The meaning of the term compatible , when applied to date fields, depends on the
COBOL division in which the usage occurs:

Data Division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

e They have the same date format

e Both are windowed date fields, where one consists only of a windowed
year, DATE FORMAT YY

¢ Both are expanded date fields, where one consists only of an
expanded year, DATE FORMAT YYYY

¢ One has DATE FORMAT YYXXXX, the other, YYXX
¢ One has DATE FORMAT YYYYXXXX, the other, YYYYXX

A windowed date field can be subordinate to an expanded date group data
item. The two date fields are compatible if the subordinate date field has
USAGE DISPLAY, starts two bytes after the start of the group expanded
date field, and the two fields meet at least one of the following conditions:

e The subordinate date field has a DATE FORMAT pattern with the
same number of Xs as the DATE FORMAT pattern of the group date
field.

e The subordinate date field has DATE FORMAT YY.

60 COBOL Language Reference

Millennium Language Extensions and Date Fields

¢ The group date field has DATE FORMAT YYYYXXXX and the subordi-
nate date field has DATE FORMAT YYXX.

Procedure Division
Two date fields are compatible if they have the same date format except
for the year part, which may be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

¢ Another windowed date field with DATE FORMAT YYXXX
¢ An expanded date field with DATE FORMAT YYYYXXX

Non-Date
A non-date can be any of the following:

¢ A data item whose date description entry does not include the DATE FORMAT
clause

e A date field that has been converted using the UNDATE function
e A literal
¢ A reference-modified date field

¢ The result of certain arithmetic operations that may include date field operands; for
example, the difference between two compatible date fields

Century Window
A century window is a 100-year interval within which any 2-digit year is unique. There
are several types of century window available to COBOL programmers:

1. For windowed date fields, it is specified by the YEARWINDOW compiler option

2. For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For Language Environment callable services, it is specified in CEESCEN

Part 1. COBOL Language Structure 61

Millennium Language Extensions and Date Fields

62 COBOL Language Reference

Part 2. COBOL Source Unit Structure

COBOL Program Structure 64
Nested Programs 66
COBOL Class Definition Structure o 69
COBOL Method Definition Structure 71

© Copyright IBM Corp. 1991, 1998 63

COBOL Program Structure

COBOL Program Structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested Programs
A nested program is a program that is contained in another program. These con-
tained programs can reference some of the resources of the programs that contain
them. If program B is contained in program A, it is directly contained if there is no
program contained in program A that also contains program B. Program B is indi-
rectly contained in program A if there exists a program contained in program A
that also contains program contained and containing programs, see B. For more
information on nested programs, see “Nested Programs” on page 66 and the IBM
COBOL Programming Guide for your platform.

Object Program
An object program is a set or group of executable machine language instructions
and other material designed to interact with data to provide problem solutions. An
object program is generally the machine language result of the operation of a
COBOL compiler on a source program.

Run Unit
A run unit is one or more object programs that interact with one another and that
function at object time as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained by the same program.

With the exception of the COPY and REPLACE statements and the end program
header, the statements, entries, paragraphs, and sections of a COBOL source program
are grouped into the following four divisions:

¢ |dentification Division
¢ Environment Division
¢ Data Division

¢ Procedure Division

The end of a COBOL source program is indicated by the END PROGRAM header. If
there are no nested programs, the absence of additional source program lines also indi-
cates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL source program.

64 © Copyright IBM Corp. 1991, 1998

COBOL Program Structure

—— Format—COBOL Source Program

> IDENTIFICATIONj—DIVISION.—PROGRAM-ID.—w—prograrn—name-l >
1D
- T] >
RECURSIVE identification-division-content
|—ISJ I—INITIALJ I—PROGRAMJ

A\ 4
\4

|—ENVIRONMENT DIVISION.—environment-divis ion—contentJ

v
v

I—DATA DIVISION.—data—division—content—J

\ 4

v

|—PROCEDURE DIVISION.—proz:edure-division-contentJ

END PROGRAM—program-name-1.]
LL{ nested source program }JJ

nested source program:

IDENTI FICATIONj—DIVISION .—PROGRAM-1D.—B—program-name-2 >
1D

A

1)

\ 4

v

| c " Lidentirication-divie: N
COMMON identification-division-content
|—ISJ L |—INITIALJ |—PROGRAMJ
INITIAL
COMMON

|—ENVIRONMENT DIVISION.—environment-divis ion—contentJ

\4

|—DATA DIVISION.—data—division—conz?enz?J

A\ 4
v

|—PROCEDURE DIVISION.—procedure—division—contentJ
| nested source program |

»—END PROGRAM—program-name-2. I

Note:
1 This separator period is optional as an IBM extension.

A sequence of separate COBOL programs can also be input to the compiler. Following
is the format for the entries and statements that constitute a sequence of source pro-
grams (batch compile).

—— Format—Sequence of COBOL Source Programs

»—LCOBOL—source—program |

\4
A

END PROGRAM program-name
An end program header separates each program in the sequence of programs.
The program-name must conform to the rules for forming a user-defined word. It
must be identical to a program-name declared in a preceding PROGRAM-ID para-
graph.

Program-name can be a nonnumeric literal, but cannot be a figurative constant.
The content of the literal must follow the rules for formation of program names.
Any lowercase letters in this literal will be folded to uppercase.

Part 2. COBOL Source Unit Structure 65

COBOL Program Structure

An end program header is optional for the last program in the sequence only if that
program does not contain any nested-source-programs.

Nested Programs

A COBOL program can contain other COBOL programs, which in turn can contain still
other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

A COBOL program may contain other COBOL programs. The contained (or nested)
programs may themselves contain yet other programs. A contained program may be
directly or indirectly contained within another program. Figure 2 describes a nested
program structure with directly and indirectly contained programs.

Id Division.
X is the outermost program Program-Id. X.
and directly contains X1 and ——— Procedure Division.
X2, and indirectly contains Display "I'm in X"
X11 and X12 Call "X1"
Call "x2"
Stop Run.
Id Division.

X1 is directly contained
in X and directly
contains X11 and X12

Program-Id. XI1.
Procedure Division.
Display "I'm in X1"

Call "X11"

Call "x12"

Exit Program.
—Id Division.

X11 1is directly Program-Id. X11.
contained in X1 —[—|—> Procedure Division.

and indirectly Display "I'm in X11"
contained in X Exit Program.

—End Program X11.
—Id Division.

X12 is directly Program-Id. X12.
contained in X1 —[—|—> Procedure Division.

and indirectly Display "I'm in X12"
contained in X Exit Program.

—End Program X12.

End Program X1.

Id Division.

Program-Id. X2.

X2 is directly - Procedure Division.

contained in X Display "I'm in X2"
Exit Program.

End Program X2.

End Program X.

Figure 2. Nested program structure with directly and indirectly contained programs

Conventions for Program-Names
The program-name of a program is specified in the PROGRAM-ID paragraph of the
program's Identification Division. A program-name can be referenced only by the CALL
statement, the CANCEL statement, the SET statement, or the END PROGRAM header.

66 COBOL Language Reference

COBOL Program Structure

Names of programs constituting a run unit are not necessarily unique, but when two
programs in a run unit are identically named, at least one of the programs must be

directly or indirectly contained within another separately compiled program that does not

contain the other of those two programs.

A separately compiled program and all of its directly and indirectly contained programs

must have unigue program-names within that separately compiled program.

Rules for Program-Names
The following rules regulate the scope of a program-name:

¢ |f the program-name is that of a program which does not possess the COMMON

attribute, and which is directly contained within another program, that program-

name can be referenced only by statements included in that containing program.

¢ |f the program-name is that of a program which does possess the COMMON attri-

bute, and which is directly contained within another program, that program-name

can be referenced only by statements included in that containing program and any
programs directly or indirectly contained within that containing program, except that
program possessing the COMMON attribute and any programs contained within it.

¢ If the program-name is that of a program which is separately compiled, that

program-name can be referenced by statements included in any other program in

the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

— If one of two programs having the same name as that specified in the CALL

statement is directly contained within the program that includes the CALL
statement, that program is called.

— If one of two programs having the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes

the CALL statement, that common program is called unless the calling
program is contained within that common program.

— Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is contained

within another program. For this discussion, we will say that Program-A contains
Program-B and Program-C, Program-C contains Program-D and Program-F, and
Program-D contains Program-E.

Part 2. COBOL Source Unit Structure

67

COBOL Program Structure

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can only be
referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be referenced
by Program-C since it contains Program-D and by any programs contained in
Program-C except for programs contained in Program-D. In other words, if Program-D
possesses the COMMON attribute, Program-D can be referenced in Program-C and
Program-F but not by statements in Program-E, Program-A or Program-B.

68 COBOL Language Reference

COBOL Class Definition

COBOL Class Definition Structure

A COBOL class definition describes a class or a metaclass. A class definition consti-
tutes a compilation unit.

Class
The entity that defines common behavior and implementation for zero, one, or
more objects. The objects that share the same implementation are considered to
be objects of the same class.

Method
Procedural code that defines one of the operations supported by an object, and
that is executed by an INVOKE statement on that object.

Instance Data
Data defining the state of an object. The instance data introduced by a class is
defined in the Working-Storage Section of the Data Division of the class definition.
The state of an object also includes the state of the instance variables introduced
by bases classes that are inherited by the current class. A separate copy of the
instance data is created for each object instance.

Subclass
A class that inherits methods and instance data from another class. When two
classes in an inheritance relationship are considered together, the subclass is the
inheritor or inheriting class; the super-class is the inheritee or inherited class.

Metaclass
A special type of class whose instances are called class-objects. Class-objects are
the run-time objects that represent SOM® classes. Any class descended from
SOMClass is a metaclass.

With the exception of the COPY and REPLACE statements and the END CLASS
header, the statements, entries, paragraphs, and sections of a COBOL class definition
are grouped into the following four divisions:

¢ Identification Division

¢ Environment Division (Configuration Section only)
e Data Division

e Procedure Division

The end of a COBOL class definition is indicated by the END CLASS header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL class definition.

© Copyright IBM Corp. 1991, 1998 69

COBOL Class Definition

—— Format—COBOL Class Definition
»—[IDENTIFICATION DIVISION.:,—CLASS—ID.—class-name—]—.
ID DIVISION.

|—identification—division—cont‘ent‘—l
»——ENVIRONMENT DIVISION.—class-environment-division-content

I—DATA DIVISION.—class-data—divisz’on—content—I

>

|—PROCEDURE DIVISION.
LLmethod-definition

»——END CLASS—class-name-1.

\4
A

END CLASS
Specifies the end of a class definition.

70 COBOL Language Reference

COBOL Method Definition

COBOL Method Definition Structure

A COBOL method definition describes a method. You can only specify a method defi-
nition within a class definition.

With the exception of the COPY and REPLACE statements and the END METHOD
header, the statements, entries, paragraphs, and sections of a COBOL method defi-
nition are grouped into the following four divisions:

¢ |dentification Division

e Environment Division (Input-Output section only)
e Data Division

e Procedure Division

The end of a COBOL method definition is indicated by the END METHOD header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL method definition.

—— Format—COBOL Method Definition

IDENTIFICATION DIVISION. T]
ID DIVISION. identification-division-content

v

>

v

I—ENVIRONMENT DIVISION.—method-environment-division-contentJ

I—DATA DIVISION.—meifhod—datfa-division-contfentfJ

v

|—PROCEDURE DIVISION.method-procedure-division-conten tJ
»——END METHOD—method-name-1.

A\
A

END METHOD
Specifies the end of a method definition.

Methods defined in a class can access instance data (class Working-Storage Section
data items) introduced in the same class but not instance data introduced by a parent
class or metaclass. Therefore, instance data is always private to the class that intro-
duces it.

Methods introduced in class-name-1 must have unique names within the class defi-
nition.

© Copyright IBM Corp. 1991, 1998 71

COBOL Method Definition

72 COBOL Language Reference

Identification Division
PROGRAM-ID Paragraph
CLASS-ID Paragraph
METHOD-ID Paragraph
Optional Paragraphs

© Copyright IBM Corp. 1991, 1998

Identification Division

73

Identification Division

Identification Division

74

The Identification Division must be the first division in every COBOL source program,
class definition, and method definition. It names the program, class, or method, and
can include the date the program, class, or method was written, the date of compilation,
and other such documentary information. The Identification Division must begin with
the words IDENTIFICATION DIVISION or ID DIVISION followed by a separator period.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the Identification Division must be the
PROGRAM-ID paragraph.

The other paragraphs are optional, and as an IBM extension, can appear in any
order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the Identification Division must be the CLASS-ID
paragraph.

The other paragraphs are optional, and can appear in any order.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the Identification Division must be the
METHOD-ID paragraph.

The other paragraphs are optional, and can appear in any order.

© Copyright IBM Corp. 1991, 1998

Identification Division

—— Format—Program ldentification Division

> IDENTIFICATIONj—DIVISION.—PROGRAM-ID.—w—prograrn—namc >
ID
~— — @ >
RECURSIVE
|—ISJ COMMON—L—_|— |—PROGRAMJ
INITIAL
INITIAL—m—
COMMON

L auThoR.)
comment-entry-
L INSTALLATION,
comment-entry:
L pATE-WRITTEN. @
comment-entry-
L pATE-COMPILED. -
comment-entry:
LsecurtTy.—@ |
comment-entry

Note:
1 This separator period is optional as an IBM extension.

4
v

| >

A

Part 3. Identification Division 75

Identification Division

— Format—Class ldentification Division

»—INH ERITS—[cZass—nume—Z

»»—EIDENTIFICATION DIVISIONj—CLASS—ID.—CZass—name-]
ID DIVISION

L]
METACLASS—m—CZass-nameJ
N

|—AUTHOR.
comment-entry

|—INSTALLATION.
comment-entry-

|—DATE-WRITTEN.
comment-entry:

v

|—DATE-COMPILED.
comment-entry:

Lsecurtty. |
comment-entry-

v
A

— Format—Method Identification Division

»»—EIDENTIFICATION DIVISION
ID DIVISION

v

»—METHOD-1D.—method-name-1

()VERRIDE—I
l—I S—I |—METHOD—I

\4

|—AUTHOR.
comment-entry

|—INSTALLATION.
comment-entry-

|—DATE-WRITTEN.
comment-entry

|

|—DATE-COMPILED.
comment-entry

Lsecurtry. |
comment-entry-

\4
A

76 COBOL Language Reference

PROGRAM-ID Paragraph

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known and
assigns selected program attributes to that program. It is required and must be the first
paragraph in the Identification Division.

program-name
A user-defined word or nonnumeric literal that identifies your program. It must
follow the following rules of formation, depending on the setting of the PGMNAME

compiler option:

Table 7. Formation Rules for Program Names Based on PGMNAME Compiler Option

PGMNAME Formation Rules
Setting MVS and VM AIX, OS/2, and Windows
PGMNAME The name can be up to 30 characters in Flagged with a warning message and
(COMPAT) length. treated as PGMNAME(UPPER).
Only the hyphen, digit, and alphabetic char-
acters are allowed in the name.
At least one character must alphabetic.
The hyphen cannot be used as the first or
last character.
If program-name is a nonnumeric literal,
(other than a figurative constant), it can
include the extension characters $, #, and
@ in the outermost program only.
PGMNAME If program-name is a user-defined word, it can be up to 30 characters in length.
(LONGUPPER)) L . .
If program-name is a nonnumeric literal, it can be up to 160 characters in length. It cannot be
a figurative constant.
Only the hyphen, digit, and alphabetic characters are allowed in the name.
At least one character must alphabetic.
The hyphen cannot be used as the first or last character.
PGMNAME Program-name must be specified as a Program-name must be specified as a
(LONGMIXED) literal. It cannot be a figurative constant. literal. It cannot be a figurative constant.
The name can be up to 160 characters in The name can be up to 160 characters in
length. length.
Program-name can consist of any character Wherever alphabetic characters are allowed,
in the range X'41' to X'FE'. you can use multi-byte characters.

For information on the PGMNAME compiler option and how the compiler processes
the names, see the IBM COBOL Programming Guide for your platform.

RECURSIVE

An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a com-
pilation unit. Recursive programs cannot contain nested subprograms.

Part 3. Identification Division 77

PROGRAM-ID Paragraph

If the RECURSIVE clause is specified, program-name-1 can be recursively reen-
tered while a previous invocation is still active. If the RECURSIVE clause is not
specified, an active program cannot be recursively reentered.

The Working-Storage Section of a recursive program defines storage that is stat-
ically allocated and initialized on the first entry to a program, and is available in a
last-used state to any of the recursive invocations.

The Local-Storage Section of a recursive program (as well as a non-recursive
program) defines storage that is automatically allocated, initialized, and deallocated
on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of the
last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:

e ALTER

e GO TO without a specified procedure name
e RERUN

e SEGMENTATION

e USE FOR DEBUGGING

Note: Methods are always recursive by default. The RECURSIVE clause cannot
be specified on the METHOD-ID statement.

COMMON
Specifies that the program named by program-name is contained within another
program, and it can be called from siblings of the common program and programs
contained within them. The COMMON clause can be used only in nested pro-
grams. For more information on conventions for program names, see the IBM
COBOL Programming Guide for your platform.

INITIAL
Specifies that when program-name is called, program-name and any programs
contained within it are placed in their initial state.

A program is in the initial state:

e The first time the program is called in a run unit
e Every time the program is called, if it possesses the initial attribute

¢ The first time the program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program

e The first time the program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or
indirectly contains the program.

When a program is in the initial state, the following occur:

e The program's internal data contained in the Working-Storage Section are ini-
tialized. If a VALUE clause is used in the description of the data item, the

78 COBOL Language Reference

CLASS-ID Paragraph

data item is initialized to the defined value. If a VALUE clause is not associ-
ated with a data item, the initial value of the data item is undefined.

¢ Files with internal file connectors associated with the program are not in the
open mode.

e The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

¢ An altered GO TO statement contained in the program is set to its initial state.

For the rules governing non-unique program names, see “Rules for Program-Names”
on page 67.

CLASS-ID Paragraph

The CLASS-ID paragraph specifies the name by which the class is known and assigns
selected attributes to that class. It is required and must be the first paragraph in a
class Identification Division.

class-name-1
A user-defined word that identifies the class.

If you want to use more flexible naming conventions for class-name-1, specify
class-name-1 in the REPOSITORY paragraph of the class definition. (This defines
an external class name to identify the class outside of this class definition.)

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). Class-name-1 cannot directly or indirectly inherit
from class-name-1. A class name can only appear once in the INHERITS clause.

class-name-2
The name of a class inherited by class-name-1. If class-name-2 is repeated, mul-
tiple inheritance is present. You must specify class-name-2 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

METACLASS
A clause that identifies the metaclass for class-name-1. A metaclass is a special
class whose instances are class objects. For more information on metaclasses,
see the IBM COBOL Programming Guide for your platform.

Do not specify the METACLASS clause when defining a metaclass.

Note: The INHERITS and METACLASS clauses can appear in either order in the
CLASS-ID paragraph.

class-name-3
The name of a metaclass that is responsible for creating and/or managing objects
of the class being defined. You must specify class-name-3 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

Part 3. Identification Division 79

CLASS-ID Paragraph

General Rules
Class-name-1, class-name-2, and class-name-3 must conform to the normal rules of
formation for a COBOL user-defined word, as described in “COBOL Words with Single-
Byte Characters” on page 3.

See “REPOSITORY Paragraph” on page 98 for details on:

¢ Class names mapping to CORBA compliant names
e Specification of external class-names with more flexible rules of formation

You can specify a sequence of class definitions and program definitions in a single
COBOL source file, forming a batch compile.

Inheritance
Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from it. A subclass can introduce new methods
that do not exist in the parent (or ancestor) class or can override a method from the
parent class. When a subclass overrides an existing method from the parent class, it
defines a new implementation for that method, which replaces the inherited implemen-
tation.

The instance data of class-name-1 is a copy of the instance data from class-name-2
together with the data declared in the Working-Storage Section of class-name-1. Note
however, instance data is always private to the class that introduces it.

The semantics of inheritance are defined by the IBM SOM. All classes must be derived
directly or indirectly from the SOMObject class. All metaclasses must be derived
directly or indirectly from SOMClass.

Multiple Inheritance
Multiple inheritance is when more than one class name is specified on the INHERITS
phrase. With multiple inheritance, a class might inherit the same methods and instance
data from different parents (if each of these parents have a common ancestor). In this
situation, (“diamond inheritance”) the subclass inherits only one set of method imple-
mentations and one copy of the instance data.

When a subclass inherits two methods with the same name, the two methods must
comply to the following conformance rules:

e The number of formal parameters on the Procedure Division USING phrase must
be the same for both methods.

e The presence or absence of the Procedure Division RETURNING phrase must be
consistent for the two methods.

e Corresponding parameters in the Procedure Division USING and RETURNING
phrases must satisfy the following:

— If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and

80 COBOL Language Reference

METHOD-ID Paragraph

BLANK WHEN ZERO clauses. Note that periods and commas can be inter-
changed if using the DECIMAL POINT IS COMMA clause, and the PICTURE
clause currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must be
defined with an identical USAGE clause or USAGE IS OBJECT REFERENCE
clause.

— For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

METHOD-ID Paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. It is required and must be the first para-
graph in a method Identification Division.

method-name-1
A user-defined word or a nonnumeric literal that identifies the method.

The rules of formation for method-name-1 are as follows:

¢ If the method name is specified in the user-defined word format, then normal
COBOL rules for a user-defined word apply.

¢ |If the method name is specified as a nonnumeric literal, then:
— The name can be up to 160 characters in length.

— The characters used in the name must be uppercase or lowercase alpha-
betic, digit, hyphen, or underscore.

— At least one character must be alphabetic.

— Hyphen cannot be used as the first or last character.

OVERRIDE
A clause that allows a subclass to override an existing method implementation
when it inherits a method from a parent class.

You must specify the OVERRIDE clause in the METHOD-ID paragraph, if
method-name-1 is overriding a method with the same name that is inherited from a
parent class.

Do not specify the OVERRIDE clause if the method is not inherited from an
ancestor class, and is being introduced by the current class definition.

Part 3. Identification Division 81

METHOD-ID Paragraph

General Rules
1. Method names that are defined for a class must be unique. (The set of methods
"defined for a class" includes the methods introduced by the class definition and
the methods inherited from parent classes.)

Note: Method names that differ only in case are not considered unique. For
example, naming one method “SAYHELLO” and another method “sayHELLO” is
invalid.

2. Method names are processed by the compiler as follows:

¢ Literal-format methods names are processed in a case-sensitive manner.
However, when processing method resolution as part of INVOKE statements
or method names that are specified as user-defined words, the compiler
ignores any difference in case.

e If necessary, the compiler translates method names to conform to CORBA
requirements:

— Hyphens are translated to zero

— If the first character of the name is a digit, it is converted as follows:
- 1 through 9 are changed to A through |
- Ois changedto J

3. If a method in class-name-1 overrides a method in class-name-2, these two
methods must satisfy the following conformance rules:

e The number of formal parameters on the Procedure Division USING phrase
must be the same for both methods.

e The presence or absence of the Procedure Division RETURNING phrase must
be consistent on the two methods.

e Corresponding parameters in the Procedure Division USING phrases must
satisfy the following:

— If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the PICTURE clause currency symbols can differ.

— If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must be defined with an identical USAGE IS OBJECT REFERENCE
clause.

— BY VALUE and BY REFERENCE specifications must be consistent.

82 COBOL Language Reference

Optional Paragraphs

¢ The identifiers specified on the Procedure Division RETURNING phrases must
satisfy the following:

— If one of the identifiers is a COBOL elementary data item not described
with USAGE IS OBJECT REFERENCE, then the corresponding identifier
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the PICTURE clause currency symbols can differ.

— If the class-name-2 Procedure Division RETURNING identifier is a uni-
versal object reference, the class-name-1 Procedure Division
RETURNING identifier must be an object reference (either a universal
object reference or an object reference typed to a specific class).

Universal object references are described with USAGE OBJECT REFER-
ENCE and typed object references are described with USAGE OBJECT
REFERENCE class-name.

— If the class-name-2 Procedure Division RETURNING identifier is an object
reference typed to a specific class, the class-name-1 Procedure Division
RETURNING identifier must be an object reference typed to the same
class or a derived class.

e For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

Optional Paragraphs

These optional paragraphs in the Identification Division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of char-
acters from the character set of the computer. The comment-entry is written in Area B
on one or more lines.

Part 3. Identification Division 83

Optional Paragraphs

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the output program listing with the current date inserted:

DATE-COMPILED. 04/27/95.

Comment-entries serve only as documentation; they do not affect the meaning of the
program. A hyphen in the indicator area (column 7) is not permitted in comment-
entries.

Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte characters in an EUC or DBCS code page in comment entries in the Iden-
tification Division of your program. Multiple lines are allowed in a comment-entry con-
taining multi-byte characters.

Under MVS and VM, you can include DBCS character strings as comment-
entries in the Identification Division of your program. Multiple lines are allowed in a
comment-entry containing DBCS strings.

A DBCS string must be preceded by a shift-out control character and followed by a
shift-in control character. For example:

AUTHOR. <.A.U.T.H.0.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When using DBCS characters in a comment-entry contained on multiple lines, shift-out
and shift-in characters must be paired on a line.

DBCS strings are described under “Character-Strings” on page 3.

84 COBOL Language Reference

Part 4. Environment Division

Configuration Section
SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph
ALPHABET Clause
SYMBOLIC CHARACTERS Clause
CLASSClause
CURRENCY SIGN Clause
REPOSITORY Paragraph

Input-Output Section
FILE-CONTROL Paragraph
SELECT Clause
ASSIGN Clause
RESERVE Clause
ORGANIZATION Clause
PADDING CHARACTER Clause
RECORD DELIMITER Clause
ACCESS MODE Clause
RECORD KEY Clause
ALTERNATE RECORD KEY Clause
RELATIVE KEY Clause
PASSWORD Clause

LOCK MODE Clause (OS/2 VSAM Files Only)

FILE STATUS Clause
I-O-CONTROL Paragraph
RERUN Clause
SAME AREAClause
SAME RECORD AREA Clause
SAME SORT AREA Clause
SAME SORT-MERGE AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause

© Copyright IBM Corp. 1991, 1998

85

Configuration Section

Configuration Section

86

The Configuration Section is an optional section for programs and classes, which can
describe the computer environment on which the program is compiled and executed.

Program Configuration Section

The Configuration Section can be specified only in the Environment Division of the
outermost program of a COBOL source program.

You should not specify the Configuration Section in a program that is contained
within another program. The entries specified in the Configuration Section of a
program apply to any program contained within that program.

Class Configuration Section

Specify the Configuration Section only in the Environment Division of the outermost
program of a class definition.

Entries in a class Configuration Section apply to the entire class definition,
including all methods introduced by that class.

Method Configuration Section

—— Format—Programs and Classes

The Configuration Section is not valid for method definitions.

»>—CONFIGURATION SECTION.

v

|—source-computer’-pc:ragmph—J

>

v

|—object-computer-paragraph—] |—spec ial -names-paragraphJ

>

v
A

|—repos i tory-paragraphJ

The Configuration Section can:

Relate IBM-defined environment-names to user-defined mnemonic names
Specify the collating sequence

Specify a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value

Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

Relate alphabet-names to character sets or collating sequences
Specify symbolic-characters
Relate class names to sets of characters

Relate object-oriented class names to the class names in the SOM interface repos-
itory

© Copyright IBM Corp. 1991, 1998

SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

—— Format
»—SOURCE-COMPUTER.

A\
A

-

I—compuz?er—namc]
ﬁDEBUGGING MODE
WITH

computer-name
A system-name. For example:

IBM-390

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source program.

A debugging line is a statement that is compiled only when the compile-time switch
is activated. Debugging lines allow you, for example, to check the value of a data-
name at certain points in a procedure.

To specify a debugging line in your program, code a 'D' in column 7 (indicator
area). You can include successive debugging lines, but each must have a 'D' in
column 7 and you cannot break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically deter-
mined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the Environment (after the OBJECT-COMPUTER
paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated the
same as a blank line.

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER para-
graph is syntax checked, but has no effect on the execution of the program.

Part 4. Environment Division 87

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

—— Format
»»>—0BJECT-COMPUTER. >
|—comput‘er—namc | entry 1 }——I
I—MEMORY—m—integer WORDS
SIZE CHARACTERS
MODULES

entry 1:

- . |
SEQUENCE—L—_I—athabet—name

l—PROG.RAMJ |—COLLATING.J IS

computer-name
A system-name. For example:

IBM-390

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked, but it has no effect on the execution of the
program.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence associated
with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might contain.
alphabet-name
The collating sequence.
PROGRAM COLLATING SEQUENCE determines the truth value of the following non-
numeric comparisons:
e Those explicitly specified in relation conditions
e Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase is specified in the
MERGE or SORT statement.

Under MVS and VM, the PROGRAM COLLATING SEQUENCE clause is
not applied to the DBCS character set.

Under AIX, OS/2, and Windows, the PROGRAM COLLATING
SEQUENCE clause is not allowed if the code page in effect is a DBCS or EUC code

page. Workstation

88 COBOL Language Reference

SPECIAL-NAMES Paragraph

When the PROGRAM COLLATING SEQUENCE clause is omitted:

. Under MVS and VM, the EBCDIC collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

. Under AIX, OS/2, and Windows, the COLLSEQ compiler option
indicates the collating sequence used. For example, if COLLSEQ(EBCDIC) is
specified and the PROGRAM COLLATING SEQUENCE is not specified (or is
NATIVE), the EBCDIC collating sequence is applied.

SEGMENT-LIMIT IS
Certain permanent segments can be overlaid by independent segments while still
retaining the logical properties of fixed portion segments. (Fixed portion segments
are made up of fixed permanent and fixed overlayable segments.)

Priority-number
An integer ranging from 1 through 49.

When SEGMENT-LIMIT is specified:

¢ A fixed permanent segment is one with a priority-number less than the
priority-number specified.

¢ A fixed overlayable segment is one with a priority-number ranging from
that specified through 49, inclusive.

For example, if SEGMENT-LIMIT IS 25 is specified:

e Sections with priority-numbers 0 through 24 are fixed permanent seg-
ments.

e Sections with priority-numbers 25 through 49 are fixed overlayable seg-
ments.

When SEGMENT-LIMIT is omitted, all sections with priority-numbers 0 through
49 are fixed permanent segments.

Except for the PROGRAM COLLATING SEQUENCE clause, the OBJECT-COMPUTER
paragraph is syntax checked, but it has no effect on the execution of the program.

SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph:

¢ Relates IBM-specified environment-names to user-defined mnemonic-names

¢ Relates alphabetic-names to character sets or collating sequences

¢ Specifies symbolic characters

¢ Relates class names to sets of characters

e Specifies a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value (multiple currency sign values and cur-
rency symbols may be specified)

e Specifies that the functions of the comma and decimal point are to be interchanged
in PICTURE clauses and numeric literals

Note: The clauses in the SPECIAL-NAMES paragraph can appear in any order.

Part 4. Environment Division 89

— Format

SPECIAL-NAMES Paragraph

»>—SPECIAL-NAMES. ' |:

environment-name-1

IS

nemonic-name-1

environment-name-2- nemonic-name-_2:
IS l—{ entry 1 }—I
entry 1 |

v

\ 4

LLALPHABET—athabe t-name-1

STANDARD-1

IS STANDARD-2

NATIVE
EBCDIC

literal-1—| phrase 1 }—L

'

|

\ 4

l—SYMBOLIC

l—CHARACTERSJ

symbolic }
l—IN—ath

abe 1.‘—name—2J

‘

\ 4

v

A\

LC LASS—cZass-name-lﬁJ—Z iteral-4
IS THRO

THRU

I
UGi,—Z i teraZ-5J

v

|

WITH

L .
CURRENCY literal-6
|—SIGN—I |—ISJ LﬁPICTURE—SYMBOL—Ziteral—7J

v

\ 4

entry 1:

| 0N
v

OFF condition-2
|—STATUS—I |—ISJ |—ON

phrase 1:
|

N condition-1
|—STATUSJ |—ISJ |—0FF

|—DECIMAL- POI NT—m—COMMA—l Ll
IS

A\
A

Londz'tion-zJ

|—STATUS

T T

|—STATUS

I | J LO”ditiOﬂ'lJ
IS

[
THROUGH literal-2—
THRU——,_

ALSO—litergl-3——

symbolic:

}——-L—-Lsymbol ic-character-1 AR

Note:

1 This separator period must be used if any of the optional clauses are selected.

IS

E integer-1 ‘

90 COBOL Language Reference

SPECIAL-NAMES Paragraph

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are:

Table 8. Meanings of Environment Names

Environment Meaning Allowed In

Name-1

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY
C01-C12 Skip to channel 1 through 12, respectively WRITE ADVANCING (On

AlX, OS/2, and Windows,
with C01-C12, one line is

advanced.)
CsP Suppress spacing WRITE ADVANCING
S01-S05 Pocket select 1-5 on punch devices WRITE ADVANCING (On

AIX, OS/2, and Windows,
with S01-S05, one line is
advanced.)

AFP-5A Advanced Function Printing™ WRITE ADVANCING

environment-name-2
A 1-byte User Programmable Status Indicator (UPSI) switch. Valid specifications
for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for user-
defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY, and
WRITE statements. Mnemonic-name-2 can be referenced only in the SET state-
ment. Mnemonic-name-2 can qualify cond-1 or cond-2 names.

Mnemonic-names and environment-names need not be unique. If you choose a
mnemonic-name that is also an environment-name, its definition as a mnemonic-
name will take precedence over its definition as an environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as year-beginning
or year-ending processing. For example, at the beginning of the Procedure Divi-
sion, an UPSI switch can be tested; if it is ON, the special branch is taken. (See
“Switch-Status Condition” on page 254.)

Part 4. Environment Division 91

ALPHABET Clause

cond-1, cond-2
Condition-names follow the rules for user-defined names. At least one character
must be alphabetic. The value associated with the condition-name is considered to
be alphanumeric. A condition-name can be associated with the on status and/or
off status of each UPSI switch specified.

In the Procedure Division, the UPSI switch status is tested through the associated
condition-name. Each condition-name is the equivalent of a level-88 item; the
associated mnemonic-name, if specified, is considered the conditional variable and
can be used for qualification.

Condition-names specified in a containing program's SPECIAL-NAMES paragraph
can be referenced from any contained program.

ALPHABET Clause

ALPHABET alphabet-name-1 IS
Provides a means of relating an alphabet-name to a specified character code set

or collating sequence.

It specifies a collating sequence when used in either:

e The PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph
e The COLLATING SEQUENCE phrase of the SORT or MERGE statement

It specifies a character code set when specified in either:

e The FD entry CODE-SET clause
¢ The SYMBOLIC CHARACTERS clause

Under AIX, OS/2, and Windows, you cannot specify the ALPHABET
clause if the code page in effect is a DBCS or EUC code page. For details, see

the IBM COBOL Programming Guide for your platform.

STANDARD-1
Under MVS and VM, specifies the ASCII character set.

Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the

locale setting.

STANDARD-2
Under MVS and VM, specifies the International Reference Version
of the ISO 7-bit code defined in International Standard 646, 7-bit Coded Char-
acter Set for Information Processing Interchange.

Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the

locale setting. Workstation

92 COBOL Language Reference

NATIVE

ALPHABET Clause

Specifies the native character code set. If the alphabet-name clause is
omitted:

Under MVS and VM, EBCDIC is assumed.

Under AIX, OS/2, and Windows, the alphabet-name is associ-
ated with the character set (ASCII or EUC) indicated by the locale in effect.

Workstation

EBCDIC

Specifies the EBCDIC character set.

literal-1
literal-2
literal-3

Specifies that the collating sequence is to be determined by the program,
according to the following rules:

The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

Each numeric literal specified must be an unsigned integer.

Each numeric literal must have a value that corresponds to a valid ordinal
position within the collating sequence in effect.

Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548, lists
the ordinal number for characters in the EBCDIC and ASCII collating
sequences.

Each character in a nonnumeric literal represents that actual character in
the character set. (If the nonnumeric literal contains more than one char-
acter, each character, starting with the leftmost, is assigned a succes-
sively ascending position within this collating sequence.)

Any characters that are not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified characters.
The relative order within the set of these unspecified characters within the
character set remains unchanged.

Within one alphabet-name clause, a given character must not be specified
more than once.

Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be 1 character in length.

When the THROUGH phrase is specified, the contiguous characters in the
native character set beginning with the character specified by literal-1 and
ending with the character specified by literal-2 are assigned successively
ascending positions in this collating sequence.

Part 4. Environment Division 93

ALPHABET Clause

This sequence can be either ascending or descending within the original
native character set. That is, if "Z" THROUGH "A" is specified, the
ascending values, left-to-right, for the uppercase letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

e When the ALSO phrase is specified, the characters specified as literal-1,
literal-3, etc., are assigned to the same position in this collating sequence.
For example, if you specify:

||D|| ALSO ||N|| ALSO ||o/0||

the characters D, N, and % are all considered to be in the same position
in the collating sequence.

¢ When the ALSO phrase is specified and alphabet-name-1 is referenced in
a SYMBOLIC CHARACTERS clause, only literal-1 is used to represent
the character in the character set.

e The character having the highest ordinal position in this collating
sequence is associated with the figurative constant HIGH-VALUE. If more
than one character has the highest position, because of specification of
the ALSO phrase, the last character specified (or defaulted to when any
characters are not explicitly specified) is considered to be the
HIGH-VALUE character for procedural statements such as DISPLAY, or
as the sending field in a MOVE statement. (If all characters and the
ALSO phrase example given above were specified as the high-order char-
acters of this collating sequence, the HIGH-VALUE character would be
%.)

e The character having the lowest ordinal position in this collating sequence
is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position, because of specification of the ALSO
phrase, the first character specified is the LOW-VALUE character. (If the
ALSO phrase example given above were specified as the low-order char-
acters of the collating sequence, the LOW-VALUE character would be D.)

When literal-1 , literal-2 , or literal-3 is specified, the alphabet-name must not
be referred to in a CODE-SET clause (see “CODE-SET Clause” on page 159).

Literal-1, literal-2 , and literal-3 must not specify a symbolic-character figura-
tive constant.

Floating-point literals cannot be used in a user-specified collating sequence.

DBCS literals cannot be used in a user-specified collating sequence.

94 COBOL Language Reference

CLASS Clause

SYMBOLIC CHARACTERS Clause

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
Symbolic-character-1 is a user-defined word and must contain at least one alpha-
betic character. The same symbolic-character can appear only once in a SYM-
BOLIC CHARACTERS clause.

Under MVS and VM, the symbolic character can be a DBCS user-
defined word.

Under AIX, OS/2, and Windows, you cannot use the SYMBOLIC
CHARACTERS clause if the code page is DBCS or EUC.

The internal representation of symbolic-character-1 is the internal representation of
the character that is represented in the specified character set. The following rules

apply:

¢ The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause. The
first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

¢ There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC CHARAC-
TERS clause.

¢ |If the IN phrase is specified, integer-1 specifies the ordinal position of the char-
acter that is represented in the character set named by alphabet-name-2. This
ordinal position must exist.

¢ If the IN phrase is not specified, symbolic-character-1 represents the character
whose ordinal position in the native character set is specified by integer-1.

Note: Ordinal positions are numbered starting from 1.

CLASS Clause

Under AIX, OS/2, and Windows, you cannot specify the CLASS clause if
the code page in effect is a DBCS or EUC code page.

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in
that clause. Class-name can be referenced only in a class condition. The charac-
ters specified by the values of the literals in this clause define the exclusive set of
characters of which this class-name consists.

Under MVS and VM, the class-name in the CLASS clause can be a
DBCS user-defined word.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value that is greater than
or equal to 1 and less than or equal to the number of characters in the alphabet
specified. Each number corresponds to the ordinal position of each character in

Part 4. Environment Division 95

CURRENCY SIGN Clause

the EBCDIC or ASCII collating series. Cannot be specified as floating-point literals
or as DBCS literals.

If nonnumeric, the literal is the actual EBCDIC or ASCII character. Literal-4 and
literal-5 must not specify a symbolic-character figurative constant. If the value of
the nonnumeric literal contains multiple characters, each character in the literal is
included in the set of characters identified by class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be one
character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified, class-name
includes those characters beginning with the value of literal-4 and ending with
the value of literal-5. In addition, the characters specified by a THROUGH
phrase can specify characters in either ascending or descending order.

CURRENCY SIGN Clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
clause character-strings contain a currency symbol. A currency symbol represents a
currency sign value that is:

¢ Inserted in such data items, when they are used as receiving items

¢ Removed from such data items, when they are used as sending items for a
numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item. For
example: '$', 'EUR', 'FRF', 'F', 'HK$', '"HKD', or X'9F' (hexadecimal code point
in some host-based code pages for < , the Euro currency sign; for more details on
programming techniques for handling the Euro, see the IBM COBOL Programming
Guide for your platform).

The CURRENCY SIGN clause specifies a currency sign value and the currency symbol
used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph may contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all
other PICTURE clause symbols, currency symbols are case-sensitive: for example, 'D'
and 'd' specify different currency symbols.

CURRENCY SIGN IS literal-6
Literal-6 must be a nonnumeric literal. Literal-6 must not be a figurative constant, a
DBCS literal, or a null-terminated literal.

If the PICTURE SYMBOL phrase is not specified, literal-6:

e Specifies both a currency sign value and the currency symbol for this currency
sign value.

e Must be a single character.

e Must not be any of the following:

96 COBOL Language Reference

CURRENCY SIGN Clause

— Digits 0 through 9

— Alphabetic characters A, B, C,D, E, G, N, P, R, S, V, X, Z, their lower-
case equivalents, or the space

— Special characters + -, . */; ()" ="

e Can be one of the following lowercase alphabetic characters: f, h, i, j, k, I, m,
0,0, tu wy

If the PICTURE SYMBOL phrase is specified, literal-6:

e Specifies a currency sign value. Literal-7, in the PICTURE SYMBOL phrase,
specifies the currency symbol for this currency sign value.

¢ May consist of one or more characters.
e Must not contain any of the following:
— Digits 0 through 9
— Special characters + - .,

PICTURE SYMBOL literal-7
Specifies a currency symbol, which can be used in a PICTURE clause to represent
the currency sign value specified by literal-6.

Literal-7 must be a nonnumeric literal consisting of a single character. Literal-7
must not be any of the following:

e A figurative constant
e Digits 0 through 9

e Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their lowercase
equivalents, or the space

e Special characters +-,.*/; ()" ="

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and the
NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the default
currency sign value and currency symbol. For more information about the CURRENCY
and NOCURRENCY compiler options, see the IBM COBOL Programming Guide for
your platform.

Some uses of the CURRENCY SIGN clause prevent use of the NUMVAL-C intrinsic
function. For details, see “NUMVAL-C” on page 488.

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE character
strings and in numeric literals.

Part 4. Environment Division 97

REPOSITORY Paragraph

REPOSITORY Paragraph

The REPOSITORY paragraph defines the names of the classes that you can use in a
class definition or program. Optionally, the REPOSITORY paragraph defines associ-
ations between class-names and external class-names.

— Format
»>—REPOSITORY. T I >
CLASS—class-name-1 a
L’jfexternal—class—name-l
IS
—, >«

class-name-1
A user-defined word that identifies the class.

external-class-name-1
A name that enables a COBOL program to define or access classes with names
that are defined using CORBA rules of formation. (Class names defined using
CORBA rules of formation might not be expressible as a COBOL user-defined
word, such as the case-sensitive SOM class names (SOMObject for example), or a
class implemented in C with a name containing underscores.)

You must specify external-class-name-1 as a nonnumeric literal, conforming to the
following rules of formation:

e The name must not be a figurative constant.
e The name can be up to 160 characters in length.

e The characters used in the name must be uppercase or lowercase alphabetic,
digit, or underscore.

e The leading character must be alphabetic.

General Rules
1. All class names (whether referenced in a program, class definition, or method intro-
duced by the class) must have an entry in the REPOSITORY paragraph. (You do
not have to put the name of the class you are defining in the REPOSITORY para-
graph. Note, if you don't, the class name is stored in all uppercase in the SOM
repository.)

You can only specify a class name once in a given REPOSITORY paragraph.

2. Entries in a class REPOSITORY paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program REPOSITORY
paragraph apply globally to all nested programs contained within the program.

98 COBOL Language Reference

REPOSITORY Paragraph

Identifying and Referencing the Class
The external class-name is used to identify and reference the class outside of the
source file containing the class definition (for example, to identify the entry for the class
in the SOM Interface Repository). The external class-name is determined by using the
contents of either external-class-name-1 or class-name-1 (as specified in the REPOSI-
TORY paragraph of a class), as described below:

1. external-class-name-1—is used directly, without translations. The external class-
names are processed in a case-sensitive manner.

2. class-name-1—is used if external-class-name-1 is not specified. To create a
CORBA-compliant external name that identifies the class, class-name-1 is proc-
essed as follows:

e The name is converted to uppercase.

e Hyphens are translated to zero.

e If the first character of the name is a digit, it is converted as follows:
— 1 though 9 are changed to A through |
— 0O is changed to J

Part 4. Environment Division 99

Input-Output Section

Input-Output Section

The Input-Output Section of the Environment Division contains two paragraphs:

¢ FILE-CONTROL paragraph
e |-O-CONTROL paragraph

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION Clause” on page 111 and “ACCESS
MODE Clause” on page 115.

Program Input-Output Section
The same rules apply to program and method I-O Sections.

Class Input-Output Section
The Input-Output Section is not valid for class definitions.

Method Input-Output Section
The same rules apply to program and method I-O Sections.

—— Programs and Methods

»»—INPUT-OUTPUT SECTION.—FILE-CONTROL.—(ll—LfiZe-controz-paragraph—aﬂ—»

>

>4

|—I-O-CONTROL. |_L J |
i-o-con trol—paragraphJ—.

Notes:

1 If there are no files defined in the program and the INPUT-OUTPUT
SECTION is specified and no file-control-paragraph is specified, then the
FILE-CONTROL paragraph-name is optional as an IBM extension.

2 If there are no files defined in the program and the FILE-CONTROL
paragraph-name is specified, then the file-control-paragraph is optional as an
IBM extension.

FILE-CONTROL
The key word FILE-CONTROL names the FILE-CONTROL paragraph. This key
word can appear only once, at the beginning of the FILE-CONTROL paragraph. It
must begin in Area A, and be followed by a separator period.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator period.
See “FILE-CONTROL Paragraph” on page 102.

[-O-CONTROL
The key word I-O-CONTROL names the I-O-CONTROL paragraph.

100 © Copyright IBM Corp. 1991, 1998

Input-Output Section

input-output-control-paragraph
Specifies information needed for efficient transmission of data between the external
data set and the COBOL program. The series of entries must end with a separator
period. See “I-O-CONTROL Paragraph” on page 124.

Part 4. Environment Division 101

FILE-CONTROL Paragraph

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with an
external data set, and specifies file organization, access mode, and other information.
The following are the formats for the FILE-CONTROL paragraph:

e Segquential file entries

¢ Indexed file entries

¢ Relative file entries

e Line sequential file entries (Workstation only)

Table 9 lists the different type of files available to mainframe and workstation COBOL

programs.
Table 9. Types of Files
File Access Method File Systems

Organization MVS and VM AIX 0S/2 Windows

Sequential QSAM, VSAM VSAMI, STL VSAM, Btrieve, VSAM2, Btrieve,
STL STL

Relative VSAM VSAML, STL VSAM, Btrieve, VSAMZ, Btrieve,
STL STL

Indexed VSAM VSAML, sTL VSAM, Btrieve, VSAMZ, Btrieve,
STL STL

Line n/a Native Native Native

Sequential

Note:

1 On AIX, you can access the SFS file system through VSAM.

2 On Windows, only remote file access is available.

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed by a
separator period. It must contain one and only one entry for each file described in an
FD or SD entry in the Data Division. Within each entry, the SELECT clause must
appear first. The other clauses can appear in any order.

Under MVS and VM, there is one exception to the rule about order. For
indexed files, the PASSWORD clause, if specified, must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is associated.

102 COBOL Language Reference

FILE-CONTROL Paragraph

—— Format 1—Sequential-File-Control-Entries

v

»—SELECT—L—_'—file—name-]—ASSIGN assignment-name-1 |
OPTIONAL T

USING—data-name-9

A\ 4

|—RESERVE—int‘eger | SEQUENTIALJ
tAREA |—()RGANIZATION—lj—J
IS

AREAS

] |—PADDI“"‘ data-nam j]
NG -name-5
|—CHARACTERJ |—ISJ |—Ziteral-.?

|—RECORD DELIMITER—L—_I—ESTANDARD—Iﬁ—‘
N assignment-name-2:

L]
ACCESS SEQUENTIAL
Lwooe] Lys

AUTOMATIC
I—MODEJ '—ISJ |—m——LOCK ON RECORD—|
WITH

LFASSWORD data-nam J
l—_l_ - e-6
IS

\4

| >

|—LOCK 2

STATUS data-name-1
|—FI LEJ |—ISJ |—data-name—BJ

Notes:
1 The USING data-name phrase of the ASSIGN clause clause is only valid under AIX, OS/2, and
Windows.

2 The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AlX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

Part 4. Environment Division

103

FILE-CONTROL Paragraph

— Format 2—Indexed-File-Control-Entries

»—SELECT—L—_'—fi le-name-1—ASSIGN assignment-name-1 | >
OPTIONAL TO

USING—data-name-9

- » INDEXED >
RESERVE—integerm—‘ ORGANIZATIONﬁ
AREA Is
AREAS
Laccess SEQUENTIAL -
|—MODEJ LIS—] |:RANDO
DYNAMIC

|

AUTOMATIC

|—MODEJ l—IS—I ﬁLOCK ON RECORDJ
WITH

»—RECORD data- -2
l_KEYJ l_IS_I ata-name

\ 4

A\

v

L Lock—

L]
PASSWORD—[j—data—name—é
IS

\4
A

. |
l—{ entry 1 }—] | STATUS data-name-1
LFILEJ LIS—J Ldata—name—8—J

entry 1:
F—ALTERNATE RECORD—) data-name-3 >
Lgevd Lisd ﬁDUPLICATES—I
WITH
> |
] |—PASSWORD data-name—7J I
s
Notes:
1 The USING data-name phrase of the ASSIGN clause is only valid under AIX, OS/2, and
Windows.

2 The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AlX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

3 RECORD is optional as an IBM extension.

104 COBOL Language Reference

FILE-CONTROL Paragraph

—— Formai 3—Relative-File-Control-Entries

»—SELECT—L—_'—file—name-I—ASSIGN assignment-name-1 |
OPTIONAL T

USING—data-name-9

v

A\ 4

r C RELATIVE
RESERVE—integer ORGANIZATION‘E—I
AREA IS

AREAS

|—ACCESc SEQUENTIAL |
|—MODEJ |—ISJ |—RELATIVE oo] Lol data-name-4J
KEY IS

RANDO! RELATIVE data-name-4——
DYNAMIC |—KEYJ |—I SJ

|_ (2)

LOCK: AUTOMATIC

I—MODEJ |—ISJ ﬁLOCK ON RECORDJ
WITH

I—PASSWORD—L—_|—d¢Jt¢J—anme—6J
IS

\ 4

v

\4
A

STATUS data-name-1
|—FI LEJ |—ISJ |—dai§a-name-8J

Notes:
1 The USING data-name phrase of the ASSIGN clause is only valid under AIX, OS/2, and
Windows.

2 The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AlX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

—— Format 4—Line Sequential 1-O (Workstation Only)

»-SELECT—L—J—fi le-name-1—ASSIGN assignment-name-1 I
OPTIONAL TO
USING—data-name-9

v

> B LINE SEQUENTIAL C]
ORGANIZATIONﬁ ACCESS B T o] SEQUENTIAL
IS MODE IS

STATUS data-name-1
|—FILEJ |—IS—] |—dal‘a-narne—B—]

A

Part 4. Environment Division

105

ASSIGN Clause

SELECT Clause

The SELECT clause chooses a file in the COBOL program to be associated with an
external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You must
specify SELECT OPTIONAL for such input files that are not necessarily present
each time the object program is executed. For more information, see the IBM
COBOL Programming Guide for your platform.

file-name-1
Must be identified by an FD or SD entry in the Data Division. A file-name must
conform to the rules for a COBOL user-defined name, must contain at least one
alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can follow
the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit that reference this file connector must have the same
specification for the OPTIONAL phrase.

ASSIGN Clause

The ASSIGN clause associates the program's name for a file with the external name for
the actual data file.

MVS and VM Syntax
assignment-name-1
Can be specified as a user-defined word or a nonnumeric literal. Any assignment-
name after the first is syntax checked, but it has no effect on the execution of the
program.

Assignment-name-1 has the following formats:

—— Format—QSAM File
> l_labez_ J l_S_ J -name

A\
A

—— Format—VSAM Sequential File

> AS- —name
l—labeZ— J

A\
A

— Format—VSAM Indexed or Relative File

»> -name
l—labeZ— i

A\
A

106 COBOL Language Reference

ASSIGN Clause

label-
Documents the device and device class to which a file is assigned. If specified, it
must end with a hyphen.

S- For QSAM files, the S- (organization) field can be omitted.

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file. Under MVS it must be
the name specified in the DD statement for this file.

The name must conform to the following rules of formation:

¢ If assignment-name-1 is a user-defined word:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9.
— The leading character must be alphabetic.

¢ |f assignment-name-1 is a literal:

— The name can contain from 1 - 8 characters.
— The name can contain the characters A-Z, a-z, 0-9, @, #, $.
— The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to upper case to
form the DD name for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have a consistent specification for assignment-name-1 in the ASSIGN clause. For
QSAM files and VSAM indexed and relative files, the name specified on the first
assignment-name-1 must be identical. For VSAM sequential files, it must be specified
as AS-name.

AIX, OS/2, and Windows Syntax
assignment-name-1
Can be either a user-defined word or a literal.

User-defined word
Assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 characters
in length. A user-defined word is treated as one of the following:

e Environment variable name — At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name
optionally preceded by the file-system ID. See “Assignment Name

Part 4. Environment Division 107

ASSIGN Clause

for Data-Names and Environment Variables” on page 109 for
details.

e System file ID of the platform — If the environment variable indi-
cated by the name is not set, the user-defined word is treated as
the system file name, optionally preceded by the file-system ID
and a comment character string. See “Assignment Name for Non-
Environment Variables and Literals” for details.

Literal
Assignment-name-1 is treated as the actual file ID for the platform.
Assignment-name-1 must follow the rules for a COBOL literal with the
length of one to 160 characters. See “Assignment Name for Non-
Environment Variables and Literals” for details.

All characters specified within the literal delimiters are used without
any mapping.

USING data-name-9
Must be defined as an alphanumeric data item, and must not be subordinate to the
file description for file-name-1. The content is evaluated when OPENed to identify
the assignment name. See “Assignment Name for Data-Names and Environment
Variables” on page 109 for details.

Assignment Name for Non-Environment Variables and Literals
If a literal or non-data-name word is specified for the name, the assignment name is
processed as follows:

— ASSIGNment name format

»>>

v

|—comment—J |—fiZe system ID—J

system file name
L——{ alt_index }—J
environment variable name

alt_index:

\4
A

F—(—alt-inx-file-name-1 J’l_ ||) |

|—alt‘—inx-fi Ze—name—Z—I

Comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

File-system ID
The first three characters of the file-system ID are used to determine the
file-system identifier. If the character string for the file-system ID is less
than three characters, then the entire character string (along with any char-
acter strings to the left of it) is treated as a comment. If you include com-

108 COBOL Language Reference

ASSIGN Clause

ments (hyphenated or not), you must include the separating hyphen
between the comment and the file-system ID.

For example, take the following two assignment-name formats:
my-comment-vsam-myfile

In this example, my-comment is the comment, vsam is the file-system ID, and
myfile is the system file or environment variable name.

my-comment-am-myfile

In this example, my-comment-am is the comment, and myfile is the system
file or environment variable name.

System file name / Environment variable name
If the assignment name is not specified in the literal form and the environ-
ment variable matching the character string is found at run time, the envi-
ronment variable value is used to identify the file system and the system
file name. Otherwise, the character string is used as the system file name.

Specifying alternate indexes — The compiler normally assigns default
alternate index file names; however, you must override the default assign-
ment when:

e The file is not a local VSAM file and has different alternate index file
name specification rules. For example, an SFS file where SFS
requires an alternate index file name to start with the base file name
followed by ; followed by a character string of your choice.

¢ The file already exists and has alternate index files with names not
corresponding to the default alternate index file names that are
assigned by the compiler. For example, a remote MVS VSAM file or a
local VSAM file create through a different language, such as PL/I.

If specifying alternate index names, they must be specified in the same
order as the alternate record keys are specified in the source program.

You can omit alternate index names, but any other alternate index names
must correspond to the position in the file definition. The following example
shows how to specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment Name for Data-Names and Environment Variables
If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

Part 4. Environment Division 109

RESERVE Clause

— Environment variable and data name value format

v

system file name
|—file system ID——I v !

\ 4
A

L(—Gll‘—in)(-fiZe—name-l ¢|_ ||)J

l—alt—inx—fiZe—name-ZJ

file-system ID If the file-system ID is specified explicitly using the environment variable
value or the data-name value, that specification for the file system over-
rides any file system specification made by the ASSIGNment name.

The environment variable value for a file is obtained when the program
containing the file is first invoked (or called) in its initial state. This value is
kept for the file for subsequent calls to the program in the last used state.

The value of the file ID specified with a data-name is obtained when the file
is OPENed. On each subsequent OPEN for the file, the value is reob-
tained.

File declarations for an external file must have the same file-system identi-
fier. If they are not, the error is caught during run time, and the application
is terminated with an error message.

system file name If there is a hyphen in the environment variable or the data name
value, the first three characters to the left of the left-most hyphen are
treated as the file-system identifier. The character string to right of the left
most hyphen is then used as the system file name (possibly including drive
and path names).

If there is no hyphen or the character string to the left of the left-most
hyphen is less than three characters long, the entire character string is
used as the system file name (possibly including drive and path names).

For information on specifying alternate indexes, see page 109.

RESERVE Clause

Under AIX, OS/2, and Windows, the RESERVE clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

files. Workstation

The RESERVE clause allows the user to specify the number of input/output buffers to
be allocated at run-time for the files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from the

DD statement when running under MVS. If none is specified, the system default is
taken.

110 COBOL Language Reference

ORGANIZATION Clause

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same value for the integer specified in the RESERVE clause.

ORGANIZATION Clause

The ORGANIZATION clause identifies the logical structure of the file. The logical struc-
ture is established at the time the file is created and cannot subsequently be changed.

You can find a discussion of the different ways in which data can be organized and of
the different access methods that you can use to retrieve the data under “File Organiza-
tion and Access Modes” on page 116.

ORGANIZATION IS SEQUENTIAL (Format 1)
A predecessor-successor relationship among the records in the file is established
by the order in which records are placed in the file when it is created or extended.

ORGANIZATION IS INDEXED (Format 2)
The position of each logical record in the file is determined by indexes created with
the file and maintained by the system. The indexes are based on embedded keys
within the file's records.

ORGANIZATION IS RELATIVE (Format 3)
The position of each logical record in the file is determined by its relative record
number.

ORGANIZATION IS LINE SEQUENTIAL (Format 4) (Workstation Only)
Under AIX, OS/2, and Windows, a predecessor-successor relationship among the
records in the file is established by the order in which records are placed in the file
when it is created or extended. A record in a LINE SEQUENTIAL file can consist
only of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION IS
SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same organization.

File Organization
You establish the organization of the data when you create the file. Once the file has
been created, you can expand the file, but you cannot change the organization.

Sequential Organization

The physical order in which the records are placed in the file determines the sequence
of records. The relationships among records in the file do not change, except that the
file can be extended. Records can be fixed-length or variable-length; there are no
keys.

Part 4. Environment Division 111

ORGANIZATION Clause

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

Indexed Organization

Each record in the file has one or more embedded keys (referred to as key data items);
each key is associated with an index. An index provides a logical path to the data
records, according to the contents of the associated embedded record key data items.
Indexed files must be direct-access storage files. Records can be fixed-length or
variable-length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item on the RECORD KEY clause of the FILE-CONTROL paragraph.

In addition, each record in an indexed file can contain one or more embedded alternate
key data items. Each alternate key provides another means of identifying which record
to retrieve. You tell COBOL the name of any alternate key data items on the ALTER-
NATE RECORD KEY clause of the FILE-CONTROL paragraph.

The key used for any specific input-output request is known as the key of reference .

Relative Organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record, based on its relative record number. For example, the first
record area is addressed by relative record number 1, and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed in
the file has no bearing on the record area in which they are stored, and thus on each
record's relative record number. Relative files must be direct-access files. Records can
be fixed-length or variable-length.

Line Sequential Organization (Workstation Only)

In a line sequential file, each record contains a sequence of characters ending with a
record terminator. The terminator is not counted in the length of the record. When
records are written to the file, trailing blanks are removed.

When reading the record, characters are read one at a time into the record area until:

e The first record terminator is encountered. The record terminator is discarded and
the remainder of the record is filled with spaces.

e The entire record area is filled with characters. If the first unread character is the
record terminator, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

Records written to line sequential files must consist of USAGE...DISPLAY and/or
DISPLAY-1 data items. If external decimal data is defined with a non-separate sign,

112 COBOL Language Reference

ORGANIZATION Clause

the sign must be in the preferred sign representation (for example, X'39' for +9 or X'79'
for -9).

For line sequential files, the native byte stream file support of the platform is used. Line
sequential files should contain only printable characters and the record terminator.

The following are not supported for line sequential files:

e APPLY WRITE ONLY clause

e BLOCK CONTAINS clause

e CODE-SET clause

¢ DATA RECORDS clause

e FILE STATUS value 39 (fixed file attribute conflict)
e LABEL RECORDS clause

e LINAGE clause

e OPEN I-O option

e PADDING CHARACTER clause

¢ RECORD CONTAINS 0 clause

e RECORD CONTAINS clause (format 3)

¢ RECORD DELIMITER clause

¢ RECORDING MODE clause

e RERUN clause

e RESERVE clause

e REVERSED phrase of OPEN statement
¢ REWRITE statement

e VALUE OF clause of file description entry
e WRITE...AT END-OF-PAGE

e WRITE...BEFORE ADVANCING

For more details on line sequential files, see “Line Sequential Organization (Workstation
Only)” on page 112.

Language Elements Treated as Comments (Workstation Only)
Under AIX, OS/2, and Windows for other files (sequential, relative, and indexed), the
following language elements are treated as comments:

e APPLY WRITE ONLY clause

e BLOCK CONTAINS clause

¢ CLOSE...FOR REMOVAL

¢ CLOSE...WITH NO REWIND

e CODE-SET clause

e DATA RECORDS clause

e LABEL RECORDS clause

e MULTIPLE FILE TAPE clause

¢ OPEN...REVERSE

e PADDING CHARACTER clause
¢ PASSWORD clause

¢ RECORD CONTAINS 0 clause
¢ RECORD DELIMITER clause

e RECORDING MODE clause (for relative and indexed files)

Part 4. Environment Division 113

¢ RERUN clause

¢ RESERVE clause

¢ SAME AREA clause

¢ SAME SORT AREA clause

¢ SAME SORT-MERGE AREA clause

¢ VALUE OF clause of file description entry

No error messages are generated (with the exception of the data name option for the
LABEL RECORDS, USE...AFTER...LABEL PROCEDURE, and GO TO MORE-LABELS
clauses).

PADDING CHARACTER Clause

Under AIX, OS/2, and Windows, the PADDING CHARACTER clause is
not supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. Workstation

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

data-name-5
Must be defined in the Data Division as an alphanumeric 1-character data item,
and must not be defined in the File Section. Data-name-5 can be qualified.

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-5 is specified, it must reference an external data
item.

The PADDING CHARACTER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

RECORD DELIMITER Clause

Under AIX, OS/2, and Windows the RECORD DELIMITER clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. Workstation

The RECORD DELIMITER clause indicates the method of determining the length of a
variable-length record on an external medium. It can be specified only for variable-
length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape file.

114 COBOL Language Reference

ACCESS MODE Clause

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified, sequen-
tial access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all four formats.

Format 1—Sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 1 supports only sequential access.

Format 2—Indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

Format 3—Relative
Records in the file are accessed in the ascending sequence of relative record
numbers of existing records in the file.

Format 4—Line Sequential (Workstation Only)
Records in the file are accessed in the sequence established
when the file is created or extended. Format 4 supports only sequential

access. Workstation

ACCESS MODE IS RANDOM
Can be specified in Formats 2 and 3 only.

Format 2—Indexed

The value placed in a record key data item specifies the record to be
accessed.

Format 3—Relative
The value placed in a relative key data item specifies the record to be
accessed.

ACCESS MODE IS DYNAMIC
Can be specified in Formats 2 and 3 only.

Part 4. Environment Division 115

ACCESS MODE Clause

Format 2—Indexed
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output statement used.

Format 3—Relative
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output request.

File Organization and Access Modes
File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic). For details on the access methods and data organization, see
Table 9 on page 102.

Note: Sequentially organized data can only be accessed sequentially; however, data
that has indexed or relative organization can be accessed with any of the three access
methods.

Access Modes
Sequential-Access Mode
Allows reading and writing records of a file in a serial manner; the order of refer-
ence is implicitly determined by the position of a record in the file.

Random-Access Mode
Allows reading and writing records in a programmer-specified manner; the control
of successive references to the file is expressed by specifically defined keys sup-
plied by the user.

Dynamic-Access Mode
Allows the specific input-output statement to determine the access mode. There-
fore, records can be processed sequentially and/or randomly.

For EXTERNAL files, every file control entry in the run unit that is associated with that
external file must specify the same access mode. In addition, for relative file entries,
data-name-4 must reference an external data item and the RELATIVE KEY phrase in
each associated file control entry must reference that same external data item in each
case.

Relationship Between Data Organizations and Access Modes
The following lists which access modes are valid for each type of data organization.

Sequential Files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records were

originally written.

Line Sequential Files
Same as for sequential files (described above).

116 COBOL Language Reference

RECORD KEY Clause

Indexed Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order (or optionally under AIX, OS/2, and Windows, descending order)
of the record key value. The order of retrieval within a set of records having dupli-
cate alternate record key values is the order in which records were written into the
set.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its key(s) in the
RECORD KEY data item (and the ALTERNATE RECORD KEY data item). If a set
of records has duplicate alternate record key values, only the first record written is
available.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using appropriate forms of input-output statements.

Relative Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order (or optionally under AIX, OS/2, and Windows, descending order)
of the relative record numbers of all records that currently exist within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number in
the RELATIVE KEY data item; the RELATIVE KEY must not be defined within the
record description entry for this file.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using the appropriate forms of input-output statements.

RECORD KEY Clause

The RECORD KEY clause (Format 2) specifies the data item within the record that is
the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item. It must be described as an alphanumeric item
within a record description entry associated with the file.

As an IBM extension, data-name-2 can be numeric, numeric-edited, alphanumeric-
edited, alphabetic, floating-point (both external and internal), or a DBCS data item.
The key is treated as an alphanumeric item for the input and output statements for
the file named in the SELECT clause. When you specify data-name-2 as a DBCS
data item, a key specified on the READ statement must also be a DBCS data item.

Data-name-2 must not reference a group item that contains a variable occurrence
data item. Data-name-2 can be qualified.

As an IBM extension, if the indexed file contains variable-length records,
data-name-2 need not be contained within the first “x” character positions of the

Part 4. Environment Division 117

ALTERNATE RECORD KEY Clause

record, where “x” equals the minimum record size specified for the file. That is,
data-name-2 can be beyond the first “x” character positions of the record, but this
is not recommended.

Data-name-2 cannot be a windowed date field.

The data description of data-name-2 and its relative location within the record must
be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need only be
described in one of these record description entries. The identical character positions
referenced by data-name-2 in any one record description entry are implicitly referenced
as keys for all other record description entries of that file.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-2 with
the same relative location within the associated record.

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

ALTERNATE RECORD KEY Clause

The ALTERNATE RECORD KEY clause (Format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item. It must be described as an alphanu-
meric item within a record description entry associated with the file.

As an IBM extension, data-name-3 can be a numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
DBCS data item. The key is treated as an alphanumeric item for the input and
output statements for the file named in the SELECT clause.

Data-name-3 must not reference a group item that contains a variable occurrence
data item. Data-name-3 can be qualified.

As an IBM extension, if the indexed file contains variable-length records,
data-name-3 need not be contained within the first “x” character positions of the
record, where “x” equals the minimum record size specified for the file. That is,
data-name-3 can be beyond the first “x” character positions of the record, but this
is not recommended.

Data-name-3 cannot be a windowed date field.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical character
positions referenced by data-name-3 in any one record description entry are implic-
itly referenced as keys for all other record description entries of that file.

The data description of data-name-3 and its relative location within the record must
be the same as those used when the file was defined. The number of alternate

118 COBOL Language Reference

RELATIVE KEY Clause

record keys for the file must also be the same as that used when the file was
created.

The leftmost character position of data-name-3 must not be the same as the left-
most character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the ALTERNATE
RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In sequential
access, the records with duplicate keys are retrieved in the order in which they were
placed in the file. In random access, only the first record written of a series of records
with duplicate keys can be retrieved.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-3, the
same relative location within the associated record, the same number of alternate
record keys, and the same DUPLICATES phrase.

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

RELATIVE KEY Clause

The RELATIVE KEY clause (Format 3) identifies a data-name that specifies the relative
record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY is
not part of the record. Data-name-4 can be qualified.

Data-name-4 cannot be a windowed date field.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify the
RELATIVE KEY clause for that file.

For EXTERNAL files, data-name-4 must reference an external data item and the
RELATIVE KEY phrase in each associated file control entry must reference that
same external data item in each case.

Part 4. Environment Division 119

LOCK MODE Clause

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

PASSWORD Clause

Under AIX, OS/2, and Windows the PASSWORD clause is treated as a
comment.

The PASSWORD clause controls access to files.

data-name-6

data-name-7
Password data items. Each must be defined in the Working-Storage Section (of the
Data Division) as an alphanumeric item. The first 8 characters are used as the
password; a shorter field is padded with blanks to 8 characters. Each password
data item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain the valid password for this file before the file can be successfully opened.

Format 1 Considerations
The PASSWORD clause is not valid for QSAM sequential files.
Format 2 and 3 Considerations

When the PASSWORD clause is specified, it must immediately follow the RECORD
KEY or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files, if the file has been completely predefined to VSAM, only the PASS-
WORD data item for the RECORD KEY need contain the valid password before the file
can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic CALLs at file
creation time through a COBOL object-time subroutine), every PASSWORD data item
for this file must contain a valid password before the file can be successfully opened,
whether or not all paths to the data are used in this object program.

For EXTERNAL files, data-name-6 and data-name-7 must reference external data
items. The PASSWORD clauses in each associated file control entry must reference
the same external data items.

LOCK MODE Clause (0OS/2 VSAM Files Only)

On MVS and VM, the LOCK MODE IS AUTOMATIC clause is invalid.

The LOCK MODE IS AUTOMATIC clause is only supported by the
VSAM file system running on OS/2.

120 COBOL Language Reference

LOCK MODE Clause

The LOCK MODE IS AUTOMATIC clause is treated as a comment on:

e AIX
e Windows
e 0OS/2 (with the exception of VSAM)

For OS/2 VSAM files, record locking is not supported for files that reside on an OS/2
LAN server. Files residing on OS/2 LAN servers are opened shared read or exclusive

write. Workstation

The LOCK MODE clause specifies whether a file is in exclusive or shareable mode. A
file in exclusive mode is open to one file connector only. A file in shareable mode is
available to any number of file connectors that do not require exclusive mode.

A file is in exclusive mode if the LOCK MODE clause is omitted (as long as the file is
not opened for input).

A file is in shareable mode when it is opened for input or when the LOCK MODE IS
AUTOMATIC clause is specified and is supported.

Do not specify the LOCK MODE IS AUTOMATIC clause if the file is specified in a
USING or GIVING phrase of a SORT or MERGE statement.

The WITH LOCK ON RECORD phrase is for documentation purposes only.

Other Statements Affecting Record Locking
Table 10 lists the statements that can affect record locking.

Table 10 (Page 1 of 2). Statements Affecting Record Locking

Statement Comments

CLOSE After you successfully CLOSE a file, any record and file locks held by the file
connector on the closed file are released.

DELETE You cannot DELETE a record that any other file connector has LOCKed.

OPEN If you attempt to OPEN a file that another file connector has LOCKed, the

OPEN fails and you receive a ‘file locked' file status (98).

READ For files opened for INPUT, READ statements will not acquire a record lock.

If you attempt to READ a record that another file connector has LOCKed, the
READ fails and you receive a 'record locked' file status (FS 99). For a
sequential READ, the setting of the file position indicator is unaffected. For a
random READ, the setting of the file position indicator is unspecified.

When you specify the READ statement at the end of the file (when no more
records exist), the AT END condition is returned regardless of any sharing of
the file. This situation can occur if the file is opened in EXTEND mode by
another file connector.

If you OPEN the file for I-O and specify the LOCK MODE IS AUTOMATIC
clause, each record is locked as it is read and released by the next I-O state-
ment accessing the file connector.

Part 4. Environment Division 121

FILE STATUS Clause

Table 10 (Page 2 of 2). Statements Affecting Record Locking

Statement

Comments

REWRITE

You cannot specify the REWRITE statement for a record that another file con-
nector has LOCKed (the file is exclusive).

If LOCK MODE IS AUTOMATIC is specified (the file is shareable), you can
use the REWRITE statement to release a record that is LOCKed.

START

You cannot use the START statement to LOCK a record or to detect if a
record is LOCKed. However, the START statement will release an existing

LOCKed record if you have specified the LOCK MODE IS AUTOMATIC
clause.

WRITE

If two or more file connectors add records to a file by sharing the file after
opening it in EXTEND mode, the following occurs:

e Sequential files: the records are in an unspecified order.

¢ Relative files: the relative key values returned are ascending but not
necessarily consecutive.

¢ Indexed files: the order of the alternate keys allowing for duplicates is
unspecified.

When you specify LOCK MODE IS AUTOMATIC, a successful WRITE state-
ment releases a LOCKed record.

FILE STATUS Clause

The FILE STATUS clause monitors the execution of each input-output operation for the

file.

When the FILE STATUS clause is specified, the system moves a value into the status
key data item after each input-output operation that explicitly or implicitly refers to this
file. The value indicates the status of execution of the statement. (See the “Status
Key” description under “Common Processing Facilities” on page 270.)

data-name-1

The status key data item can be defined in the Working-Storage, Local-Storage, or
Linkage sections as either of the following:

e A 2-character alphanumeric item

e A 2-character numeric data item, with explicit or implicit USAGE IS DISPLAY.
It is treated as an alphanumeric item.

Note:

Data-name-1 must not contain the PICTURE symbol 'P"'.

Data-name-1 can be qualified.

The status key data item must not be variably located; that is, the data item cannot
follow a data item containing an OCCURS DEPENDING ON clause.

data-name-8

Represents information returned from the file system. Since the definitions are
specific to the file systems and platforms, applications that depend on the specific
values in data-name-8 might not be portable across platforms.

122 COBOL Language Reference

FILE STATUS Clause

Under MVS and VM, data-name-8 must be defined as a group item of
6 bytes in the Working-Storage or Linkage Section of the Data Division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS, RRDS).

On MVS and VM, for VSAM files the 6-byte VSAM return code is comprised of the
following:

e The first 2 bytes of data-name-8 contain the VSAM return code in binary
notation. The value for this code is defined (by VSAM) as 0, 8, or 12.

¢ The next 2 bytes of data-name-8 contain the VSAM function code in binary
notation. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or 5.

e The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
notation. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.
If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the currently
defined COBOL FILE STATUS code. User identification and handling of exception
conditions are allowed at the same level as that defined by VSAM.

Function code and feedback code are set if and only if the return code is set to
nonzero. If they are referenced when the return code is set to zero, the contents
of the fields are not dependable.

Definitions of values in the return code , function code , and feedback code fields
are defined by VSAM. There are no COBOL additions, deletions, or modifications
to the VSAM definitions. For more information, see VSAM Administration: Macro
Instruction Reference.

Under AIX, OS/2, and Windows, how you define data-name-8 is
dependent on the file system you are using.

Btrieve, STL, and Native Platform File Systems
You must define data-name-8 with PICTURE 9(6) and USAGE
DISPLAY attributes. However, you can define an additional field with
PICTURE X(n). The file system defines the feedback values, which
are converted to the six digit external decimal representation with
leading zeros, when the file systems feedback value is less than
100000. If you have defined an additional field using PICTURE X(n),
then X(n) contains additional information describing any non-zero feed-
back code. (For most programs, an 'n' value of 100 should be ade-
guate to show the complete message text. If the file is defined with a
large number of alternate keys then allow 100 bytes plus 20 bytes per
alternate key.)

VSAM File System
You must define data-name-8 with PICTURE X(n) and USAGE
DISPLAY attributes, where 'n' is 6 or greater. The PICTURE string
value represents the first 'n' bytes of the VSAM reply message struc-

Part 4. Environment Division 123

I-O-CONTROL Paragraph

ture (defined by VSAM). If the size of the reply message structure (m)
is shorter than 'n', only the first 'm' bytes contain useful information.

Note: This also applies to SFS files accessed through VSAM on AlX.
For information on VSAM file handling on the workstation, see:

e For AIX: SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment

e For OS/2: SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environ-
ment

e For Windows: SMARTdata UTILITIES User's Guide for Windows

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph of the Input-Output Section specifies when checkpoints
are to be taken and the storage areas to be shared by different files. This paragraph is
optional in a COBOL program.

The key word I-O-CONTROL can appear only once, at the beginning of the paragraph.
The word I-O-CONTROL must begin in Area A, and must be followed by a separator
period.

Each clause within the paragraph can be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The 1-O-CONTROL paragraph ends with a sepa-
rator period.

—— Sequential I1-O-Control Entries

»»——RERUN—ON assignment-w phrase 1 }
file-name-1 EVERY
file-name-3—V—file-name-4—@]

\4
A

—SAME:
|—RECORDJ |—AREA—I |—FOR—I

|

-MULTIPLE FILE—2 lfz'le-name-5
Lrared Leontamns l—Posmow—z’nteger-zJ

LAPPLY WRITE—ONLYW
ON

phrase 1:
}—[integer-l—RECORDS file-name-1 |
END—L—_I—[REEL:TJ [OFj
OF UNIT
Notes:

1 ON is optional as an IBM extension.
2 File-name-4 is optional as an IBM extension.

3 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for MVS
VSAM files and are treated as comments on AlX, OS/2, and Windows.

124 COBOL Language Reference

RERUN Clause

— Relative and Indexed |-O-Control Entries

> RERUN—ON assignment—w phrase 1 |
-file-name-1 EVERY

\4
A

SAME File-name-3—Y—file-name-4-@1]
|—RECORDJ |—AREAJ I—FORJ
phrase 1:
I—integer—l—RECORDS—LO—FJ—fiZe—name—] |
Notes:

1 ON is optional as an IBM extension.
2 File-name-4 is optional as an IBM extension.

— Line Sequential I-O-Control Entries (Workstation Only)

fi Ze—name—3—[fi le-name-4

v
A

»»>——SAME
|—RECORDJ |—AREA—] LFOR—]

—— Sort Merge 1-O-Control Entries (MVS and VM Only)
T

RERUN—L—_'—ass ignment-name- 1J
ON

»— ¥ SAME——RECORD | phrase 1 | |
somﬂ Laread Lror!

A\
A

SORT-MERGE:
phrase 1:
—ri Ze-name-B—Efi le-name-4-1) |
Note:

1 File-name-4 is optional as an IBM extension.

RERUN Clause

Under AIX, OS/2, and Windows, the RERUN clause is not supported for
line sequential files or for programs compiled with the THREAD compiler option. If you
use NOTHREAD, the RERUN clause is treated as a comment.

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint method
required for complete compliance to the COBOL 85 Standard, see /IBM COBOL for
MVS & VM Programming Guide.

Do not use the RERUN clause:

¢ On files with the EXTERNAL attribute
e In programs with the RECURSIVE attribute

Part 4. Environment Division 125

RERUN Clause

e In programs compiled with the THREAD option (Workstation only)
¢ In methods

file-name-1
Must be a sequentially organized file.

assignment-name-1
The external data set for the checkpoint file. It must not be the same assignment-
name as that specified in any ASSIGN clause throughout the entire program,
including contained and containing programs. For QSAM files, it has the format:

—— Format—QSAM File
" igber- J Ls- T ™

\4
A

That is, it must be a QSAM file. It must reside on a tape or direct access device.
See also Appendix E, “ASCII Considerations for MVS and VM” on page 565.

VSAM and QSAM Considerations

The file named in the RERUN clause must be a file defined in the same program
as the I-O-CONTROL paragraph, even if the file is defined as GLOBAL.

SORT/MERGE Considerations :

When the RERUN clause is specified in the I-O-CONTROL paragraph, checkpoint
records are written at logical intervals determined by the sort/merge program during
execution of each SORT or MERGE statement in the program. When it is omitted,
checkpoint records are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a program, and
it cannot be specified in contained programs. It will have a global effect on all
SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-1 that is
processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can
specify the same file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1
occurs. The terms REEL and UNIT are interchangeable.

Note: This clause is not supported. If you code it in your program, it will be
treated as a comment.

When multiple END OF REEL/UNIT phrases are specified, no two of them can
specify the same file-name-1.

126 COBOL Language Reference

SAME RECORD AREA Clause

The END OF REEL/UNIT phrase can only be used if file-name-1 is a sequentially
organized file.

SAME AREA Clause

Under AIX, OS/2, and Windows, the SAME AREA clause is treated as a
comment.

The SAME AREA clause specifies that two or more files, that do not represent sort or
merge files, are to use the same main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3

file-name-4
Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

o For QSAM files, the SAME clause is treated as documentation.
¢ For MVS VSAM files, the SAME clause is treated as if equivalent to the SAME
RECORD AREA.

More than one SAME AREA clause can be included in a program. However:
¢ A specific file-name must not appear in more than one SAME AREA clause.

¢ If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

¢ The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA Clause

The SAME RECORD AREA clause specifies that two or more files are to use the same
main storage area for processing the current logical record. All of the files can be open
at the same time. A logical record in the shared storage area is considered to be both
of the following:

¢ A logical record of each opened output file in the SAME RECORD AREA clause
¢ A logical record of the most recently read input file in the SAME RECORD AREA
clause.
More than one SAME RECORD AREA clause can be included in a program. However:

¢ A specific file-name must not appear in more than one SAME RECORD AREA
clause.

Part 4. Environment Division 127

SAME SORT AREA Clause

If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include the
GLOBAL clause.

The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same organ-
ization or access.

SAME SORT AREA Clause

Under AIX, OS/2, and Windows, the SAME SORT AREA clause is
treated as a comment.

The SAME SORT AREA clause is syntax checked but has no effect on the execution of
the program.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

When the SAME SORT AREA clause is specified, at least one file-name specified must
name a sort file. Files that are not sort files can also be specified. The following rules

apply:

More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

If a file that is not a sort file is named in both a SAME AREA clause and in one or
more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

Files named in a SAME SORT AREA clause need not have the same organization
or access.

Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME AREA or SAME
RECORD AREA clause.

During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with file-
names named in this clause must not be in the open mode.

128 COBOL Language Reference

APPLY WRITE-ONLY Clause

SAME SORT-MERGE AREA Clause
Under AIX, OS/2, and Windows, the SAME SORT-MERGE AREA clause
is treated as a comment.

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

MULTIPLE FILE TAPE Clause

e Under AlX, 0S/2, and Windows, all files are treated as a single volume
file. Any multiple volume files specified are treated as comments.

The MULTIPLE FILE TAPE clause (Format 1) specifies that two or more files share the
same physical reel of tape.

This clause is syntax checked, but it has no effect on the execution of the program.
The function is performed by the system through the LABEL parameter of the DD state-
ment.

APPLY WRITE-ONLY Clause

Under AIX, OS/2, and Windows, the APPLY WRITE-ONLY clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. Workstation

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for files
that have standard sequential organization, have variable-length records, and are
blocked. If you specify this phrase, the buffer is truncated only when the space avail-
able in the buffer is smaller than the size of the next record. Otherwise, the buffer is
truncated when the space remaining in the buffer is smaller than the maximum record
size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY WRITE-ONLY
results, see the description of the AWO compiler option in the IBM COBOL Program-
ming Guide for your platform.

Part 4. Environment Division 129

APPLY WRITE-ONLY Clause

130 COBOL Language Reference

Part 5. Data Division

Data Division Overview 132
File Section 133
Working-Storage Section 133
Local-Storage Section 135
Linkage Section 135
Data Types e 136
Data Relationships 137
Data Division—File Description Entries L. 144
File Section 147
EXTERNAL Clause e 148
GLOBAL Clause 149
BLOCK CONTAINS Clause i e 149
RECORD Clause e 151
LABEL RECORDS Clause i ittt e 154
VALUE OF Clause e e 155
DATARECORDS Clause o ittt 155
LINAGE Clause e 155
RECORDING MODE Clause o v ittt et i e 157
CODE-SET Clause e 159
Data Division—Data Description Entryo 161
Format 1 e 161
Format 2 e 162
Format 3 e 162
Level-Numbers 162
BLANK WHEN ZERO Clause it i 164
DATE FORMAT Clause e 164
EXTERNAL Clause e 170
GLOBAL Clause e 170
JUSTIFIED Clause e e 171
OCCURS Clause e 172
PICTURE Clause e 178
REDEFINES Clause e 195
RENAMES Clause e 198
SIGN Clause e 200
SYNCHRONIZED Clause 202
USAGE Clause e 209
VALUE Clause e 217

© Copyright IBM Corp. 1991, 1998 131

Data Division Overview

Data Division Overview

—— Format—Program and Method Data Division
»>—DATA DIVISION.

This overview describes the structure of the Data Division for programs, classes, and
methods. Each section in the Data Division has a specific logical function within a
COBOL source program or method and can be omitted when that logical function is not
needed. If included, the sections must be written in the order shown. The Data Divi-
sion is optional.

Program Data Division
The Data Division of a COBOL source program describes, in a structured manner,
all the data to be processed by the object program.

Class Data Division
The Class Data Division section contains data description entries for object-
instance data. The Class Data Division contains only the Working-Storage Section.

Method Data Division
A method has two visible Data Divisions: the Class Data Division and the Method
Data Division. If the same data-name is used in both the Class Data Division and
the Method Data Division, when a method references the data-name, the data-
name in the Method Data Division takes precedence.

v

>

>

LFILE SECTION. ' L l ‘

-fi Ze—description—entry—Lrecord—descript ion—entr‘yJ—J

LWORKING-STORAGE SECTION. ' k | l

v

record-description-entry
data-item-description-entry:

LLOC/—\L—STORAGE SECTION. ' t | '

v

record-descript ion-entry—“
data-item-description-entry

>

LLINKAGE SECTION. ' t | l

\4
A

record-description-entry
data-item-description-entry

Format—Class Data Division

LWORKING-STORAGE SECTION. ¢t | ‘

\
A

record-description-entry-
data-item-description-entry

132

© Copyright IBM Corp. 1991, 1998

Data Division Overview

File Section

The File Section defines the structure of data files. The File Section must begin with
the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the File Section. It provides infor-
mation about the physical structure and identification of a file, and gives the record-
name(s) associated with that file. For the format and the clauses required in a file
description entry, see “Data Division—File Description Entries” on page 144.

record-description-entry
A set of data description entries (described in “Data Division—Data Description
Entry” on page 161) that describe the particular record(s) contained within a partic-
ular file.

More than one record description entry can be specified; each is an alternative
description of the same record storage area.

Data areas described in the File Section are not available for processing unless the file
containing the data area is open.

Note: A method File Section can define EXTERNAL files only. A single run-unit level
file connector is shared by all programs and methods containing a declaration of a
given EXTERNAL file.

Working-Storage Section

The Working-Storage Section describes data records that are not part of data files but
are developed and processed by a program or method. It also describes data items
whose values are assigned in the source program or method and do not change during
execution of the object program.

The Working-Storage Section must begin with the section header Working-Storage
Section, followed by a separator period.

Program Working-Storage
The Working-Storage Section for programs (and methods) can also describe
external data records, which are shared by programs and methods throughout the
run-unit. All clauses that are used in record descriptions in the File Section as well
as the VALUE and EXTERNAL clauses (which might not be specified in record
description entries in the File Section) can be used in record descriptions in the
Working-Storage Section.

Method Working-Storage
A single copy of the Working-Storage for a method is statically allocated and per-
sists in a last-used state for the duration of the run-unit. The same single copy is
used whenever the method is invoked, regardless of which object the method is
invoked upon.

If a VALUE clause is specified on a method Working-Storage data item, the data
item is initialized to the VALUE clause value on the first invocation.

Part 5. Data Division 133

Data Division Overview

If the EXTERNAL attribute is specified on a data description entry in a method
Working-Storage Section, a single copy of the storage for that data item is allo-
cated once for the duration of the run-unit. That storage is shared by all programs
and methods in the run-unit containing a definition for the external data item.

Class Working-Storage
A separate copy of the Class Working-Storage data items is allocated for each
object instance and remains until that object is destroyed.

By default, Class Working-Storage data items are global to all of the methods intro-
duced by the class.

To initialize instance data (Class Working-Storage data items), you can write a
somlnit method override. For an example of how to write an override method
using somlnit, see Figure 3. VALUE clauses are not supported for initializing
instance data.

IDENTIFICATION DIVISION.
CLASS-ID. 00CTass INHERITS SOMObject.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS SOMObject IS "SOMObject"
CLASS 00CTass IS "OOClass".
DATA DIVISION.
Working-Storage Section.
01 instance-data PIC X(3).
PROCEDURE DIVISION.

IDENTIFICATION DIVISION.
METHOD-ID. "somInit" OVERRIDE.
PROCEDURE DIVISION.
MOVE "new" TO instance-data.
EXIT METHOD.
END METHOD "somInit".

IDENTIFICATION DIVISION.
METHOD-ID. "MyMethod".
PROCEDURE DIVISION.
IF instance-data = "new"
CALL "Creating"
MOVE "old" TO instance-data
ELSE
CALL "Existing"
END-IF.
EXIT METHOD.
END METHOD "MyMethod".

END CLASS 00Class.

Figure 3. Example of a sominit Method Override

134 COBOL Language Reference

Data Division Overview

The Working-Storage Section contains record description entries and data description
entries for independent data items, called data item description entries

record-description-entry
Data entries in the Working-Storage Section that bear a definite hierarchic relation-
ship to one another must be grouped into records structured by level number. See
“Data Division—Data Description Entry” on page 161 for description.

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic relation-
ship to one another need not be grouped into records, provided that they do not
need to be further subdivided. Instead, they are classified and defined as inde-
pendent elementary items. Each is defined in a separate data-item description
entry that begins with either the level number 77 or 01. See “Data Division—Data
Description Entry” on page 161 for description.

Note: The data description entries for a class differ from a program and method in
that:

e You cannot specify the EXTERNAL attribute in a data description entry.
e The GLOBAL attribute has no effect.
e You can only specify the VALUE clause on condition names.

Local-Storage Section

The Local-Storage Section defines storage that is allocated and freed on a per-
invocation basis. On each invocation, data items defined in the Local-Storage Section
are reallocated and initialized to the value assigned in their VALUE clauses. Data
items defined in the Local-Storage Section cannot specify the EXTERNAL clause.

The Local-Storage Section must begin with the header LOCAL-STORAGE SECTION
followed by a separator period.

You can specify the Local-Storage Section in recursive programs, in non-recursive pro-
grams, and in methods.

Note: Method Local-Storage content is the same as a program Local-Storage content
except that the GLOBAL attribute has no effect (since methods cannot be nested).

A separate copy of the data defined in a method Local-Storage section is created each
time the method is invoked. The storage allocated for the data is freed when the
method returns.

Linkage Section

The Linkage Section describes data made available from another program or method.

record-description-entry
See “Working-Storage Section” on page 133 for description.

Part 5. Data Division 135

Data Types

data-item-description-entry
See “Working-Storage Section” on page 133 for description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the Linkage Section with
the following exceptions:

¢ You cannot specify the VALUE clause for items other than level-88 items.

¢ You cannot specify the EXTERNAL clause in the Linkage Section.

As an IBM extension, you can specify the GLOBAL clause in the Linkage Section.
(Note, the GLOBAL attribute has no effect for methods.)

Data Types

File Data

Two types of data can be processed: file data and program data.

File data is contained in files. (See “File Section” on page 147.) A file is a collection
of data records existing on some input-output device. A file can be considered as a
group of physical records; it can also be considered as a group of logical records. The
Data Division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or out
of storage. The size of a physical record is determined by the particular input-output
device on which it is stored. The size does not necessarily have a direct relationship to
the size or content of the logical information contained in the file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely within
one physical unit of data); several logical records can be contained within one physical
record, or one logical record can extend across several physical records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the logical
record(s), labeling information, and so forth).

Record description entries describe the logical records in the file, including the cate-
gory and format of data within each field of the logical record, different values the data
might be assigned, and so forth.

After the relationship between physical and logical records has been established, only
logical records are made available to you. For this reason, a reference in this manual
to “records” means logical records, unless the term “physical records” is used.

136 COBOL Language Reference

Data Relationships

Program Data
Program data is created by a program, instead of being read from a file.

The concept of logical records applies to program data as well as to file data. Program
data can thus be grouped into logical records, and be defined by a series of record
description entries. Items that need not be so grouped can be defined in independent
data description entries (called data item description entries).

Data Relationships

The relationships among all data to be used in a program are defined in the Data Divi-
sion, through a system of level indicators and level-numbers.

A level indicator , with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are associ-
ated; FD is the file description level indicator and SD is the sort-merge file description
level indicator.

A level-number , with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate to)
level indicators, they can also be used independently to describe internal data or data
common to two or more programs. (See “Level-Numbers” on page 162 for level-
number rules.)

Levels of Data

After a record has been defined, it can be subdivided to provide more detailed data
references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could be:
customer name, customer address, account number, department number of sale, unit
amount of sale, dollar amount of sale, previous balance, plus other pertinent informa-
tion.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items . Thus, a record can be made up of a series of elementary
items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items can
be combined into group items . Groups themselves can be combined into a more
inclusive group that contains one or more subgroups. Thus, within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group items

into records. Special level-numbers are also used; they identify data items used for
special purposes.

Part 5. Data Division 137

Data Relationships

Levels of Data in a Record Description Entry
Each group and elementary item in a record requires a separate entry, and each must
be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive level-number
possible. A level-01 entry can be either a group item or an elementary item. It
must begin in Area A.

02-49
These level-numbers specify group and elementary items within a record. They
can begin in Area A or Area B. Less inclusive data items are assigned higher (not
necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a level-number
less than or equal to the level-number of this group is encountered.

All elementary or group items immediately subordinate to one group item must be
assigned identical level-numbers higher than the level-number of this group item.

Figure 4 on page 139 illustrates the concept. Note that all groups immediately subor-
dinate to the level-01 entry have the same level-number. Note also that elementary
items from different subgroups do not necessarily have the same level numbers, and
that elementary items can be specified at any level within the hierarchy.

138 COBOL Language Reference

Data Relationshi

ps

The COBOL record description entry

written as follows
01 RECORD-ENTRY.
05 GROUP-1.

10 SUBGROUP-1.

15 ELEM-1 PIC...
15 ELEM-2 PIC...

10 SUBGROUP-2.

15 ELEM-3 PIC...
15 ELEM-4 PIC...

05 GROUP-2.
15 SUBGROUP-3.

25 ELEM-5 PIC...
25 ELEM-6 PIC...

<«—This entry includes—

<«—This entry includes—

<«—This entry includes

15 SUBGROUP-4 PIC...

05 ELEM-7 PIC...

is subdivided as indicated below:

<«——This entry includes

<«—This entry includes

<«—This entry includes—

This entry includes itself.

This entry includes itself.

v

v v

v

The storage arrangement of the record description entry is illustrated below:

<

<

< GROUP-1

RECORD—ENTRY

»
»

<+—SUBGROUP—1—» | «—SUBGROUP—2—»

<
<

<«——SUBGROUP-3—> |

GROUP-2 >

ELEM-1 | ELEM-2 | ELEM-3

ELEM-4

ELEM-5

ELEM—-6

SUBGROUP-4 | ELEM-7

Figure 4. Levels in a Record Description

Part 5. Data Division

139

Data Relationships

IBM COBOL accepts nonstandard level-numbers that are not identical to others at the
same level. For example, the following two record description entries are equivalent:

01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
05 EMPLOYEE-ADDRESS.
10 STREET PICTURE X(10).
10 CITY PICTURE X(10).
01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

Special Level-Numbers

Indentation

Special level-numbers identify items that do not structure a record. The special level-
numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup previ-
ously defined data items.

(For details, see “RENAMES Clause” on page 198.)

77 ldentifies data item description entries — independent Working-Storage or Linkage
Section items that are not subdivisions of other items, and are not subdivided
themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of a
conditional variable. (For details, see “VALUE Clause” on page 217.)

Note: Level-77 and level-01 entries in the Working-Storage and Linkage Sections that
are referenced in the program must be given unique data-names, because neither can
be qualified. Subordinate data-names that are referenced in the program must be
either uniquely defined, or made unique through qualification. Unreferenced data-
names need not be uniquely defined.

Successive data description entries can begin in the same column as preceding entries,
or can be indented. Indentation is useful for documentation, but does not affect the
action of the compiler.

Classes and Categories of Data

All data used in a COBOL program can be divided into classes and categories.

Every group item belongs to the alphanumeric class, even if the subordinate elementary
items belong to another class.

140 COBOL Language Reference

Data Relationships

Every elementary item in a program belongs to one of the classes as well as to one of
the categories. Table 11 shows the relationship among data classes and categories.

Every data item which is a function is an elementary item, and belongs to the category
alphanumeric or numeric, and to the corresponding class; the category of each function
is determined by the definition of the function.

Table 11. Classes and Categories of Data

Level of Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric

Internal Floating-point

External Floating-point

Alphanumeric Numeric-Edited

Alphanumeric-Edited

Alphanumeric

DBCS

Group Alphanumeric Alphabetic

Numeric

Internal Floating-point

External Floating-point

Numeric-Edited

Alphanumeric-Edited

Alphanumeric
DBCS

Alignment Rules
The standard alignment rules for positioning data in an elementary item depend on the

category of a receiving item (that is, an item into which the data is moved; see “Ele-
mentary Moves” on page 353).

Numeric
For such receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one
that has logical meaning but that does not exist as an actual character
in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified imme-
diately to the right of the field. The data is then treated according to
the preceding rule.

Part 5. Data Division 141

Data Relationships

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

Internal Floating-point
A decimal point is assumed immediately to the left of the field. The data is
aligned then on the leftmost digit position following the decimal point, with
the exponent adjusted accordingly.

External Floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

Alphanumeric, Alphanumeric-Edited, Alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if neces-
sary) truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified, as described in “JUSTIFIED Clause” on page 171.

Under AIX, 0S/2, and Windows, using control characters
X'00" through X'1F' within an alphanumeric literal can give unpredictable
results, which are not diagnosed by the compiler. Use hex literals instead.

Workstation

Standard Data Format
COBOL makes data description as machine independent as possible. For this reason,
the properties of the data are described in relation to a standard data format rather than
a machine-oriented format.

The standard data format uses the decimal system to represent numbers, no matter
what base is used by the system, and uses all the characters of the character set of the
computer to represent nonnumeric data.

Character-String and Item Size
In your program, the size of an elementary item is determined through the number of
character positions specified in its PICTURE character-string. In storage, however, the
size is determined by the actual number of bytes the item occupies, as determined by
the combination of its PICTURE character-string and its USAGE clause.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the item;
USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one, the

compiler truncates the data to the number of characters represented in the shorter
item's PICTURE character-string.

142 COBOL Language Reference

Signed Data

Data Relationships

For example, if a sending field with PICTURE S99999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is truncated
to +45. For additional information see “USAGE Clause” on page 209.

The TRUNC compiler option can affect the value of a binary numeric item. For infor-
mation on TRUNC, see the IBM COBOL Programming Guide for your platform.

There are two categories of algebraic signs used in IBM COBOL: operational signs
and editing signs.

Operational Signs

Editing Signs

Operational signs are associated with signed numeric items, and indicate their algebraic
properties. The internal representation of an algebraic sign depends on the item's
USAGE clause, its SIGN clause (if present), and on the operating environment
involved. (For further details about the internal representation see “USAGE Clause” on
page 209.) Zero is considered a unique value, regardless of the operational sign. An
unsigned field is always assumed to be either positive or zero.

Editing signs are associated with numeric-edited items; editing signs are PICTURE
symbols that identify the sign of the item in edited output.

Part 5. Data Division 143

Data Division—File Description Entries

Data Division—File Description Entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the File
Section. The order in which the optional clauses follow the FD or SD entry is not
important.

144 © Copyright IBM Corp. 1991, 1998

Data Division—File Description Entries

—— Format 1—Sequential Files

»»—FD—file-name-1 >
\—meXTERNALJ LL—JfG.LOBALJ
IS IS

v

\ 4

L ; j
BLOCK: lnteger—Z—ECHARACTERS
|—CONTAINSJ |—integer—]—TOJ RECORDS
]

L ; 3 -
RECORD integer-3
I—CONTAINS—J |—CHARACTERS—J
—,_—_l—integer-4—T0—integer-5—L—_|—
CONTAINS CHARACTERS
clause 1 } B .
DEPENDING—L—_I—data—name-l
ON
|—LABEL RECORD] STANDARDiJ
L IS —OMITTED
RECORDS

'—data-name—ZJ

LVALUE 0F—Lsy$ tem-name-]—l_—J—Edata-name-B;,—d
IS literal-1
LDATA—[

I—LINAGE—L———]—-[data—nameﬂ——m—-l clause 2 }'J
IS integer-8 LINES

NG mode CODE-SET alphabet-name
Lyoped Lis Crs]

\ 4
v

\ 4

\4
A

clause 1:

| \V |

VARYING
I
integer- —integer-
|—ISJ |—INJ I—SIZEJ i 6J |—TO i 7J
FROM

»

\4

I—CHARACTERSJ

clause 2:

FOOTING data-narne—6;|—‘ | TOP—[data-name—tl—‘
|—WITHJ |—ATJ integer-9 |—LINESJ |—ATJ integer-10

v

| 5 '
BOTTOM ata-name-8
|—LINESJ I—ATJ integer-11

Part 5. Data Division 145

Data Division—File Description Entries

— Format 2—Relative/Indexed Files

»>—FD—file-name-1 >
\—i,fEXTERNAL—I I—FA'fGLOBALJ
IS IS

>

L ; j "
BLOCK: znteger—Z—ECHARACTERS
|—CONTAINSJ l—im.‘eger—]—TOJ RECORDS
g |—RECOR[) T o integer-3 T] | g
CONTAINS CHARACTERS
—’_—_'—integer-4—T0—integer-5—L—_'—
CONTAINS CHARACTERS
L clause 1 |

l—DEPE J
NDING—L—_'—data-name—l
ON

A\
A

|—LABEL RECORD:] LSTANDARD
L IS OMITTED
RECORDS
ARE

LVALUE OF—Lsys tem-name-l—i]—‘:data-name-j:,—LJ
IS literal-1

>

LDATA—I:
clause 1:

| \

VARYING

| Avl

|—ISJ LIN—] |—SIZEJ ﬁinteger-tﬁJ |—T0—integer-7—]
FROM

>

v

\4
A

v

|—CHARACTERS—I

—— Format 3—Line Sequential Files (Workstation Only)

»>—FD—file-name-1
\—i‘fEXTERNALJ \—i‘fGLOBALJ
IS IS

v

\
A

L .
RECORD integer-3
|—CONTAINSJ |—CHARACTERSJ

—ﬁ—integer%—m—integer% B .
CONTAINS CHARACTERS
L clause 1 }

L J
DEPENDING—ﬁ—data-name—l
ON

clause 1:

| v

ARYING >
| v o
|—ISJ |—INJ |—SIZEJ ﬁintegerﬁJ |—TO—integer—7J

FROM

|—CHARACTERSJ

146 COBOL Language Reference

File Section

—— Format 4—Sort/Merge Files

»»—SD—file-name-1 B I >
RECORD integer-3

|—CONTAINSJ I—CHARACTERSJ
—,_—_I—integer—4—T0—integer—5 C .
CONTAINS CHARACTERS

|
|—DEPENDING—D——d]
ata-name-1
ON

clause 1 |

\ 4
v

LDATA
_|:

L ; j
BLOCK: lnteger—Z—[CHARACTERS
|—CONTAINSJ Linteger-]—TOJ RECORDS:

v

A\ 4

|—LABEL RECORD] ST/—\ND/—\RD—J
t IS | |:OMITTED—
RECORDS
|—AREJ

LVALUE OF—Lsys tem-name—]—l_—_l—Edata—name-B;,—d
IS literal-1

LLINAGEdetG-HGﬂ?EW clause 2 }J
IS integer-8 LINES
]

data-name—ZJ—

\ 4
v

A\
A

A\

|—CO T
DE-SET alphabet-name
IS

clause 1:

' VARYING >
| v AV
|—ISJ |—INJ |—SIZEJ ﬁinteger-éJ |—T0—in1teger—7J
FROM

|—CHARACTERSJ

clause 2:
|

B j_J | j_J
FOOTING data-name-6 TOP: data-name-7
|—WITHJ |—ATJ |—integer—9 |—LINESJ |—ATJ integer-10
> |

| B !
BOTTOM data-name-8
|—LINESJ |—ATJ |—z‘nteger-11

v

File Section
The File Section must contain a level indicator for each input and output file:

¢ For all files except sort/merge, the File Section must contain an FD entry.
¢ For each sort or merge file, the File Section must contain an SD entry.

Part 5. Data Division 147

EXTERNAL Clause

file-name
Must follow the level indicator (FD or SD), and must be the same as that specified
in the associated SELECT clause. The file-name must adhere to the rules of for-
mation for a user-defined word; at least one character must be alphabetic. The
file-name must be unique within this program.

One or more record description entries must follow the file-name. When more than
one record description entry is specified, each entry implies a redefinition of the
same storage area.

The clauses that follow file-name are optional; they can appear in any order.

FD (Formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator
period.

SD (Format 4)
An SD entry must be written for each sort or merge file in the program. The last
clause in the SD entry must be immediately followed by a separator period.

The following example illustrates the File Section entries needed for a sort or
merge file:

SD SORT-FILE.

01 SORT-RECORD PICTURE X(80).

EXTERNAL Clause

The EXTERNAL clause specifies that a file connector is external, and permits commu-
nication between two programs by the sharing of files. A file connector is external if the
storage associated with that file is associated with the run unit rather than with any
particular program within the run unit. An external file can be referenced by any
program in the run unit that describes the file. References to an external file from dif-
ferent programs using separate descriptions of the file are always to the same file. In a
run unit, there is only one representative of an external file.

In the File Section, the EXTERNAL clause can only be specified in file description
entries.

The records appearing in the file description entry need not have the same name in
corresponding external file description entries. In addition, the number of such records
need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a global

name. See the IBM COBOL Programming Guide for your platform for specific informa-
tion on the use of the EXTERNAL clause.

148 COBOL Language Reference

BLOCK CONTAINS Clause

GLOBAL Clause

The GLOBAL clause specifies that the file connector named by a file-name is a global
name. A global file-name is available to the program that declares it and to every
program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry for
that file-name. A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared or, in the case of record
description entries in the File Section, if the GLOBAL clause is specified in the file
description entry for the file-name associated with the record description entry. (See
the IBM COBOL Programming Guide for your platform for specific information on the
use of the GLOBAL clause.)

Two programs in a run unit can reference global file connectors in the following circum-
stances:

1. An external file connector can be referenced from any program that describes that
file connector.

2. If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the con-
taining program.

BLOCK CONTAINS Clause

Under AIX, OS/2, and Windows, the BLOCK CONTAINS clause is not
supported for line sequential files. It is treated as a comment for sequential, relative

and indexed files.

The BLOCK CONTAINS clause specifies the size of the physical records. The charac-
ters in the BLOCK CONTAINS clause reflect the number of bytes in the record.

For example, if you have a block with 10 DBCS characters, the BLOCK CONTAINS
clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be omitted.
When it is omitted, the compiler assumes that records are not blocked. Even if each
physical record contains only one complete logical record, coding BLOCK CONTAINS 1
RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated File Control entry
specifies a VSAM file; the concept of blocking has no meaning for VSAM files; the
clause is syntax checked, but it has no effect on the execution of the program.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of char-
acter positions and does not depend upon whether the value was specified as CHAR-
ACTERS or as RECORDS.

Part 5. Data Division 149

BLOCK CONTAINS Clause

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of:

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

If only integer-2 is specified, it specifies the exact character size of the phys-
ical record. When integer-1 and integer-2 are both specified, they represent,
respectively, the minimum and maximum character sizes of the physical
record.

Integer-1 and integer-2 must include any control bytes and padding contained
in the physical record. (Logical records do not include padding.)

The CHARACTERS phrase is the default. CHARACTERS must be specified
when:

e The physical record contains padding.

e Logical records are grouped so that an inaccurate physical record size
could be implied. For example, suppose you describe a variable-length
record of 100 characters, yet each time you write a block of 4, one
50-character record is written followed by three 100-character records. If
the RECORDS phrase were specified, the compiler would calculate the
block size as 420 characters instead of the actual size, 370 characters.
(This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2 records of
maximum size, and provides any additional space needed for control bytes.

When running under MVS, BLOCK CONTAINS 0 can be specified for QSAM files; the
block size is determined at run time from the DD parameters or the data set label.

If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS 0 CHARACTERS clause is specified (or omitted), the block size is deter-
mined at run time from the DD parameters or the data set label of the file. For output
data sets, with either of the above conditions, the DCB used by Language Environment
will have a zero block size value. If you do not specify a block size value, the operating
system might select a System Determined Block Size (SDB). See the operating system
specifications for further information on SDB.

BLOCK CONTAINS can be omitted for SYSIN/SYSOUT files under MVS. The blocking
is determined by the operating system.

When running under CMS, BLOCK CONTAINS 0 can be specified for QSAM files; the
block size is determined at run time from the FILEDEF parameters or the data set label.
If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS clause is omitted (or if the BLOCK CONTAINS 0 CHARACTERS clause is

150 COBOL Language Reference

RECORD Clause

specified), the block size is determined at run time from the FILEDEF parameters or the
data set label of the file.

Under VM, the BLOCK CONTAINS 0 clause might cause blocked or unblocked records
to be used for an output file, depending on the FILEDEF options specified. The DCB
used by Language Environment will have a zero block size, so the FILEDEF uses the
CMS defaults. The defaults are documented in the CMS Command Reference, under
the FILEDEF command.

The BLOCK CONTAINS clause is treated as a comment under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

RECORD Clause

Format 1

When the RECORD clause is used, the record size must be specified as the number of
character positions needed to store the record internally. That is, it must specify the
number of bytes occupied internally by the characters of the record (not the number of
characters used to represent the item within the record).

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 20 CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a
group item. (See “USAGE Clause” on page 209 and “SYNCHRONIZED Clause” on
page 202.)

When the RECORD clause is omitted, the compiler determines the record lengths from
the record descriptions. When one of the entries within a record description contains
an OCCURS DEPENDING ON clause, the compiler uses the maximum value of the
variable-length item to calculate the number of character positions needed to store the
record internally.

If the associated file connector is an external file connector, all file description entries in

the run unit that are associated with that file connector must specify the same
maximum number of character positions.

Format 1 specifies the number of character positions for fixed-length records.

—— Format 1
»»—RECORD:

integer-3

\é
A

L contains— L cHARACTERS

integer-3
Must be an unsigned integer that specifies the number of character positions con-
tained in each record in the file.

Part 5. Data Division 151

RECORD Clause

Under AIX, OS/2, and Windows the RECORD CONTAINS clause is
valid. However, the RECORD CONTAINS 0 CHARACTERS clause is not sup-
ported for line sequential files. It is treated as a comment for sequential, relative

and indexed files. Workstation

Under MVS, the RECORD CONTAINS 0 CHARACTERS clause can be
specified for input QSAM files containing fixed-length records; the record size is
determined at object time from the DD statement parameters or the data set label.
If, at object time, the actual record is larger than the 01 record description, only the
01 record length is available. If the actual record is shorter, only the actual record
length can be referred to. Otherwise, uninitialized data or an addressing exception
can be produced.

Note: If the RECORD CONTAINS 0 clause is specified, then the SAME AREA,
SAME RECORD AREA, or APPLY WRITE-ONLY clauses cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2
Format 2 specifies the number of character positions for either fixed-length or variable-
length records. Fixed-length records are obtained when all 01 record description entry
lengths are the same. The Format 2 RECORD CONTAINS clause is never required,
because the minimum and maximum record lengths are determined from the record
description entries.

Under AIX, OS/2, and Windows, the Format 2 RECORD clause is not
supported for line sequential files.

— Format 2

»—RECORD—L—_'—integer-4—T0—integer-5 T o
CONTAINS CHARACTERS

integer-4

integer-5
Must be unsigned integers. Integer-4 specifies the size of the smallest data record,
and integer-5 specifies the size of the largest data record.

152 COBOL Language Reference

Format 3

RECORD Clause

Format 3 is used to specify variable-length records.

—— Format 3

»»—RECORD VARYING >
|—IS—J |—IN—J |—SIZE—J LL—J—integer—6—J
FROM

> >

|—T0—integer—7J |—CHARACTERSJ |—DEPENDING—LO—N_I—daIfa-name-lJ

integer-6
Specifies the minimum number of character positions to be contained in any record
of the file. If integer-6 is not specified, the minimum number of character positions
to be contained in any record of the file is equal to the least number of character
positions described for a record in that file.

integer-7
Specifies the maximum number of character positions in any record of the file. If
integer-7 is not specified, the maximum number of character positions to be con-
tained in any record of the file is equal to the greatest number of character posi-
tions described for a record in that file.

The number of character positions associated with a record description is determined
by the sum of the number of character positions in all elementary data items (excluding
redefinitions and renamings), plus any implicit FILLER due to synchronization. If a
table is specified:

¢ The minimum number of table elements described in the record is used in the sum-
mation above to determine the minimum number of character positions associated
with the record description.

e The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions associ-
ated with the record description.

If data-name-1 is specified:
¢ Data-name-1 must be an elementary unsigned integer.

¢ Data-name-1 cannot be a windowed date field.

¢ The number of character positions in the record must be placed into the data item
referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement
is executed for the file.

e The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement
or the unsuccessful execution of a READ or RETURN statement does not alter the
content of the data item referenced by data-name-1.

o After the successful execution of a READ or RETURN statement for the file, the
contents of the data item referenced by data-name-1 indicate the number of char-
acter positions in the record just read.

Part 5. Data Division 153

LABEL RECORDS Clause

During the execution of a RELEASE, REWRITE, or WRITE statement, the number of
character positions in the record is determined by the following conditions:

e |f data-name-1 is specified, by the content of the data item referenced by
data-name-1.

e |If data-name-1 is not specified and the record does not contain a variable occur-
rence data item, by the number of character positions in the record.

e If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed position and that portion of the table described by the
number of occurrences at the time of execution of the output statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the number
of character positions in the current record that participate as the sending data items in
the implicit MOVE statement is determined by the following conditions:

e |f data-name-1 is specified, by the content of the data item referenced by
data-name-1.

e |If data-name-1 is not specified, by the value that would have been moved into the
data item referenced by data-name-1 had data-name-1 been specified.

LABEL RECORDS Clause
Under AIX, OS/2, and Windows, the LABEL RECORDS clause is not
supported for line sequential files.
It is treated as a comment for sequential, relative and indexed files. A warning
message is issued if you use any of the following language elements:

e LABEL RECORD IS data-name
e USE..AFTER...LABEL PROCEDURE
¢ GO TO MORE-LABELS

The LABEL RECORDS clause indicates the presence or absence of labels. If it is not
specified for a file, label records for that file must conform to the system label specifica-
tions.

For VSAM files, the LABEL RECORDS clause is syntax checked, but it has no effect
on the execution of the program. COBOL label processing, therefore, is not performed.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

154 COBOL Language Reference

LINAGE Clause

data-name-2
User labels are present in addition to standard labels. Data-name-2 specifies the
name of a user label record. Data-name-2 must appear as the subject of a record
description entry associated with the file.

The LABEL RECORDS clause is treated as a comment under an SD.

VALUE OF Clause

Under AIX, OS/2, and Windows, the VALUE OF clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

files. Workstation

The VALUE OF clause describes an item in the label records associated with this file.
The clause is syntax checked, but has no effect on the execution of the program.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section. It cannot be described with the USAGE

IS INDEX clause.

literal-1
Can be numeric or nonnumeric, or a figurative constant of category numeric or

nonnumeric.

Cannot be a floating-point literal.

The VALUE OF clause is treated as a comment under an SD.

DATA RECORDS Clause

Under AIX, OS/2, and Windows, the DATA RECORDS clause is not sup-
ported for line sequential files. It is treated as a comment for sequential, relative and

indexed files.

The DATA RECORDS clause is syntax checked, but it serves only as documentation
for the names of data records associated with this file.

data-name-4
The names of record description entries associated with this file.

As an IBM extension, the data-name need not have an 01 level number record
description with the same name associated with it.

LINAGE Clause

The LINAGE clause specifies the depth of a logical page in terms of number of lines.
Optionally, it also specifies the line number at which the footing area begins, as well as
the top and bottom margins of the logical page. (The logical page and the physical
page cannot be the same size.)

Part 5. Data Division 155

LINAGE Clause

The LINAGE clause is effective for sequential files opened OUTPUT and, as an IBM
extension, EXTEND.

All integers must be unsigned. All data-names must be described as unsigned integer
data items.

data-name-5

integer-8
The number of lines that can be written and/or spaced on this logical page. The
area of the page that these lines represent is called the page body . The value
must be greater than zero.

WITH FOOTING AT
Integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number must be
greater than zero, and not greater than the last line of the page body. The footing
area extends between those two lines.

LINES AT TOP
Integer-10 or the value of the data item in data-name-7 specifies the number of
lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
Integer-11 or the value of the data item in data-name-8 specifies the number of
lines in the bottom margin of the logical page. The value can be zero.

Figure 5 illustrates the use of each phrase of the LINAGE clause.

)
) LINES AT TOP integer-10 (top mirgin)
)

logical
page body page depth

WITH FOOTING integer-9

footing area

v
LINAGE integer-8

)
) LINES AT BOTTOM integer-11 (bottom|margin)
)

Figure 5. LINAGE Clause Phrases

The logical page size specified in the LINAGE clause is the sum of all values specified
in each phrase except the FOOTING phrase. If the LINES AT TOP and/or the LINES

156 COBOL Language Reference

RECORDING MODE Clause

AT BOTTOM phrase is omitted, the assumed value for top and bottom margins is zero.
Each logical page immediately follows the preceding logical page, with no additional
spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page body
(integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page body,
first footing line, top margin, and bottom margin of the logical page for this file. See
Figure 5 on page 156 above. These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the values of data-name-5, data-name-6, data-name-7,
and data-name-8 if specified, are used to determine the page body, first footing line, top
margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must have:
¢ A LINAGE clause, if any file description entry has a LINAGE clause.

¢ The same corresponding values for integer-8, integer-9, integer-10, and integer-11,
if specified.

¢ The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8.

See “ADVANCING Phrase” on page 437 for the behavior of carriage control characters
in EXTERNAL files.

The LINAGE clause is treated as a comment under an SD.

LINAGE-COUNTER Special Register
For information about the LINAGE-COUNTER Special Register, see
“LINAGE-COUNTER” on page 13.

RECORDING MODE Clause

Under MVS and VM
The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Part 5. Data Division 157

RECORDING MODE Clause

Recording Mode F (Fixed)
All the records in a file are the same length and each is wholly contained within
one block. Blocks can contain more than one record, and there is usually a fixed
number of records for each block. In this mode, there are no record-length or
block-descriptor fields.

Recording Mode V (Variable)
The records can be either fixed-length or variable-length, and each must be wholly
contained within one block. Blocks can contain more than one record. Each data
record includes a record-length field and each block includes a block-descriptor
field. These fields are not described in the Data Division. They are each 4 bytes
long and provision is automatically made for them. These fields are not available
to you.

Recording Mode U (Fixed or Variable)
The records can be either fixed-length or variable-length. However, there is only
one record for each block. There are no record-length or block-descriptor fields.

Note: You cannot use RECORDING MODE U if you are using the BLOCK CON-
TAINS clause.

Recording Mode S (Spanned)
The records can be either fixed-length or variable-length, and can be larger than a
block. If a record is larger than the remaining space in a block, a segment of the
record is written to fill the block. The remainder of the record is stored in the next
block (or blocks, if required). Only complete records are made available to you.
Each segment of a record in a block, even if it is the entire record, includes a
segment-descriptor field, and each block includes a block-descriptor field. These
fields are not described in the Data Division; provision is automatically made for
them. These fields are not available to you.

Note: When recording mode S is used, the BLOCK CONTAINS CHARACTERS
clause must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the COBOL for MVS
& VM compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

¢ Use the RECORD CONTAINS integer clause (for more information, see IBM
COBOL for MVS & VM Compiler and Run-Time Migration Guide.)

¢ Omit the RECORD clause and make sure all level-01 records associated with
the file are the same size and none contain an OCCURS DEPENDING ON
clause.

V The compiler determines the recording mode to be V if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

e Use the RECORD IS VARYING clause

158 COBOL Language Reference

CODE-SET Clause

e Omit the RECORD clause and make sure all level-01 records associated with
the file are not the same size or some contain an OCCURS DEPENDING ON
clause

¢ Use the RECORD CONTAINS integer-1 TO integer-2 clause with integer-1 the
minimum length and integer-2 the maximum length of the level-01 records
associated with the file. The two integers must be different, with values
matching minimum and maximum length of either different length records or
record(s) with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block size is
smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE U
clause must be explicitly used.

Under AlX, OS/2, and Windows
Under AIX, OS/2, and Windows, the RECORDING MODE clause is not supported for
line sequential files. It is treated as a comment for a relative or indexed file. For record
sequential files, the RECORDING MODE clause is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING MODE F
if the record descriptions are variable.

V Variable length record format is assumed (even if the record descriptions are
fixed).

U Treated as a comment.

S Treated the same as V.

CODE-SET Clause

Under AIX, OS/2, and Windows the CODE-SET clause is not supported
for line sequential files. It is treated as a comment for sequential, relative and indexed

files. Workstation

The CODE-SET clause specifies the character code used to represent data on a mag-
netic tape file. When the CODE-SET clause is specified, an alphabet-name identifies
the character code convention used to represent data on the input-output device.

Alphabet-name must be defined in the SPECIAL-NAMES paragraph as STANDARD-1
(for ASCll-encoded files), as STANDARD-2 (for ISO 7-bit encoded files), as EBCDIC
(for EBCDIC-encoded files), or as NATIVE. When NATIVE is specified, the CODE-SET
clause is syntax checked, but it has no effect on the execution of the program.

The CODE-SET clause also specifies the algorithm for converting the character codes
on the input-output medium from/to the internal EBCDIC character set.

Part 5. Data Division 159

CODE-SET Clause

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described with the
SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for this
file.

If the associated file connector is an external file connector, all CODE-SET clauses in
the run unit that are associated with that file connector must have the same character
set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is treated as a comment under an SD.

160 COBOL Language Reference

Data Division—Data Description Entry

Data Division—Data Description Entry

A data description entry specifies the characteristics of a data item.

This chapter describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data description
entry is used in this chapter to refer to data and record description entries.

Data description entries that define independent data items do not make up a record.
These are known as data item description entries

The data description entry has three general formats. All data description entries must
end with a separator period.

Format 1

Format 1 is used for data description entries in all Data Division sections.

—— Format 1

»»—Ilevel-number B] >
data-name-1 redefines-clause
FILLER

\ 4
\4

|—bZank—when—zero—clauseJ I—e)(ter'nul—clauseJ I—global—cluuseJ

\ 4
\4

I—just ified—clauseJ I—occur‘s—clauseJ ’—picture—clauseJ

v

|—sign-clause—J |—synchronized-cZause—J |—usage-clause—J

»>

\4
A

|—value-clauseJ |—date-format-cZauseJ

Note: The clauses can be written in any order with two exceptions:
If data-name or FILLER is specified, it must immediately follow the level-number.

When the REDEFINES clause is specified, it must immediately follow data-name or
FILLER, if either is specified. If data-name or FILLER is not specified, the REDE-
FINES clause must immediately follow the level-number.

Level-number in Format 1 can be any number from 01-49 or 77.

A space, a separator comma, or a separator semicolon must separate clauses.

© Copyright IBM Corp. 1991, 1998 161

Level-Numbers

Format 2
Format 2 regroups previously defined items.
—— Format 2
»>—66—data-name-1—renames-clause. ><
A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.
All level-66 entries associated with one record must immediately follow the last data
description entry in that record.
Details are contained in “RENAMES Clause” on page 198.
Format 3

Format 3 describes condition-names.

—— Format 3

»»—88—condition-name-1—value-clause.

\4
A

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further informa-
tion on condition-name entries can be found under “VALUE Clause” on page 217.

Level-Numbers

The level-number specifies the hierarchy of data within a record, and identifies special-
purpose data entries. A level-number begins a data description entry, a renamed or
redefined item, or a condition-name entry. A level-number has a value taken from the
set of integers between 1 and 49, or from one of the special level-numbers, 66, 77, or
88.

—— Format

»»—Tlevel-number
data-name—lj
FILLER

\ 4
A

162 COBOL Language Reference

Level-Numbers

level-number
01 and 77 must begin in Area A and must be followed either by a separator period;
or by a space, followed by its associated data-name, FILLER, or appropriate data
description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed by a
space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a
space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01
through 09.

Successive data description entries can start in the same column as the first or
they can be indented according to the level-number. Indentation does not affect
the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any number
of spaces to the right of Area A. The extent of indentation to the right is limited
only by the width of Area B.

For more information, see “Levels of Data” on page 137

data-name
Explicitly identifies the data being described.

If specified, a data-name identifies a data item used in the program. The data-
name must be the first word following the level-number.

The data item can be changed during program execution.

Data-name must be specified for level-66 and level-88 items. It must also be spec-
ified for any entry containing the GLOBAL or EXTERNAL clause, and for record
description entries associated with file description entries having the GLOBAL or
EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The key word FILLER
is optional. If specified, FILLER must be the first word following the level-number.

The key word FILLER can be used with a conditional variable, if explicit reference
is never made to the conditional variable but only to values it can assume. FILLER
cannot be used with a condition-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING or
SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an INI-
TIALIZE statement, elementary FILLER items are ignored.

If the data-name or FILLER clause is omitted, the data item being described is treated
as though FILLER had been specified.

Part 5. Data Division 163

DATE FORMAT Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces
when its value is zero.

—— Format

»—BLANK: ZERO
l—WHENJ kZEROS
ZEROES

A\
A

The BLANK WHEN ZERO clause can be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or explicitly, as
USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is specified for a
numeric item, the item is considered a numeric-edited item.

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88 items.

The BLANK WHEN ZERO clause must not be specified for the same entry as the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed for:

¢ [|tems described with the USAGE IS INDEX clause

¢ Date fields

e DBCS items

e External or internal floating-point items

e ltems described with USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE

DATE FORMAT Clause

The DATE FORMAT clause specifies that a data item is a windowed or expanded date
field:

Windowed date fields
Contain a windowed (2-digit) year, specified by a DATE FORMAT clause
containing YY.

Expanded date fields
Contain an expanded (4-digit) year, specified by a DATE FORMAT clause
containing YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is syntax
checked, but has no effect on the execution of the program. NODATEPROC disables
date processing. The rules and restrictions described in this reference for the DATE
FORMAT clause and date fields apply only if the DATEPROC compiler option is in
effect.

164 COBOL Language Reference

DATE FORMAT Clause

—— Format

v
A

»>—DATE FORMAT—L—_|—date-pattern
IS

The date-pattern is a character string, such as YYXXXX, representing a windowed or
expanded year optionally followed or preceded by one through four characters repres-
enting other parts of a date, such as the month and day:

Date-pattern string... Specifies that the data item contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit representing a
semester or quarter (1-4).

XX Two characters; for example, digits representing a
month (01-12).

XXX Three characters; for example, digits representing a
day of the year (001-366).

XXXX Four characters; for example, 2 digits representing a

month (01-12) and 2 digits representing a day of the
month (01-31).

For an introduction to date fields and related terms, see “Millennium Language Exten-
sions and Date Fields” on page 58. For details on using date fields in applications, see
the IBM COBOL Programming Guide for your platform, or the IBM COBOL Millennium
Language Extensions Guide.

Semantics of Windowed Date Fields
Windowed date fields undergo automatic expansion relative to the century window
when they are used as operands in arithmetic expressions or arithmetic statements.
However, the result of incrementing or decrementing a windowed date is still treated as
a windowed date for further computation, comparison, and storing.

When used in the following situations, windowed date fields are treated as if they were
converted to expanded date format:

e Operands in subtractions in which the other operand is an expanded date

¢ Operands in relation conditions

¢ A sending field in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the win-
dowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric windowed
date field is treated as if it was expanded as follows:

e |If yyis less than nn, then add 2000 to yy

Part 5. Data Division 165

DATE FORMAT Clause

e If yyis equal to or greater than nn, then add 1900 to yy

For signed numeric windowed date fields, this means that there can be two representa-
tions of some years. For instance, windowed year values 99 and -01 are both treated
as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but using a prefix
of “19” or “20” instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date field
defined by:

01 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)
VALUE IS 450101.

is treated as if it was an expanded date field with a value of:

e 19450101, if the century window starting year is 1945 or earlier
or
e 20450101, if the century window starting year is later than 1945

Date Trigger Values (Host Only)

When the DATEPROC(TRIG) compiler option is in e